{"title":"基于格子的PSQ吸烟模型研究","authors":"Shengding Sun","doi":"10.1137/18S017077","DOIUrl":null,"url":null,"abstract":"We study the dynamics of smoking behavior of agents with a stochastic lattice-based model, assuming that each agent occupies a node and is influenced by its neighbors. This mechanism is adapted from the PSQ smoking model, which is based on a system of ordinary differential equations. The difference in this model is that, more realistically, potential smokers are only influenced by nearby current smokers, instead of all smokers. In addition, the stochasticity of this model also accounts better for the randomness in real world smoking behavior. It is shown here that the quantitative estimates of this new lattice model are significantly different from the previous numerical results obtained in other works using the ODE model. This suggests that taking locality into account affects the model behavior. The critical exponents of this new lattice smoking model under von Neumann neighborhood condition are calculated and verified to be the same as the classic SIRS epidemic model, which classifies this model as belonging to the directed percolation class. We also consider the model in continuum setting, and solve the system numerically using a particular convolution kernel. To the author’s knowledge this is the first time where this widely used and discussed PSQ smoking model is incorporated into the lattice-based setting, and our results show that this changes the quantitative behavior of the PSQ model significantly.","PeriodicalId":93373,"journal":{"name":"SIAM undergraduate research online","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Lattice-Based Approach to the PSQ Smoking Model\",\"authors\":\"Shengding Sun\",\"doi\":\"10.1137/18S017077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the dynamics of smoking behavior of agents with a stochastic lattice-based model, assuming that each agent occupies a node and is influenced by its neighbors. This mechanism is adapted from the PSQ smoking model, which is based on a system of ordinary differential equations. The difference in this model is that, more realistically, potential smokers are only influenced by nearby current smokers, instead of all smokers. In addition, the stochasticity of this model also accounts better for the randomness in real world smoking behavior. It is shown here that the quantitative estimates of this new lattice model are significantly different from the previous numerical results obtained in other works using the ODE model. This suggests that taking locality into account affects the model behavior. The critical exponents of this new lattice smoking model under von Neumann neighborhood condition are calculated and verified to be the same as the classic SIRS epidemic model, which classifies this model as belonging to the directed percolation class. We also consider the model in continuum setting, and solve the system numerically using a particular convolution kernel. To the author’s knowledge this is the first time where this widely used and discussed PSQ smoking model is incorporated into the lattice-based setting, and our results show that this changes the quantitative behavior of the PSQ model significantly.\",\"PeriodicalId\":93373,\"journal\":{\"name\":\"SIAM undergraduate research online\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM undergraduate research online\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/18S017077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM undergraduate research online","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/18S017077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We study the dynamics of smoking behavior of agents with a stochastic lattice-based model, assuming that each agent occupies a node and is influenced by its neighbors. This mechanism is adapted from the PSQ smoking model, which is based on a system of ordinary differential equations. The difference in this model is that, more realistically, potential smokers are only influenced by nearby current smokers, instead of all smokers. In addition, the stochasticity of this model also accounts better for the randomness in real world smoking behavior. It is shown here that the quantitative estimates of this new lattice model are significantly different from the previous numerical results obtained in other works using the ODE model. This suggests that taking locality into account affects the model behavior. The critical exponents of this new lattice smoking model under von Neumann neighborhood condition are calculated and verified to be the same as the classic SIRS epidemic model, which classifies this model as belonging to the directed percolation class. We also consider the model in continuum setting, and solve the system numerically using a particular convolution kernel. To the author’s knowledge this is the first time where this widely used and discussed PSQ smoking model is incorporated into the lattice-based setting, and our results show that this changes the quantitative behavior of the PSQ model significantly.