{"title":"2函子的q系统补全","authors":"Mainak Ghosh","doi":"10.1142/s0129167x23500738","DOIUrl":null,"url":null,"abstract":"A Q-system is a unitary version of a separable Frobenius algebra object in a C*-tensor category or a C*-2-category. We prove that, for C*-2-categories $\\mcal C$ and $\\mcal D$, the C*-2-category $\\textbf{Fun}(\\mcal C, \\mcal D)$ of $ * $-$ 2 $-functors, $ * $-$ 2 $-transformations and $ * $-$ 2 $-modifications is Q-system complete, whenever $\\mcal D$ is Q-system complete. We use this result to provide a characterisation of Q-system complete categories in terms of $ * $-$ 2 $-functors and to prove that the $ 2 $-category of actions of a unitary fusion category $\\mcal C$ on C*-algebras is Q-system complete.","PeriodicalId":54951,"journal":{"name":"International Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Q-SYSTEM COMPLETION OF 2-FUNCTORS\",\"authors\":\"Mainak Ghosh\",\"doi\":\"10.1142/s0129167x23500738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Q-system is a unitary version of a separable Frobenius algebra object in a C*-tensor category or a C*-2-category. We prove that, for C*-2-categories $\\\\mcal C$ and $\\\\mcal D$, the C*-2-category $\\\\textbf{Fun}(\\\\mcal C, \\\\mcal D)$ of $ * $-$ 2 $-functors, $ * $-$ 2 $-transformations and $ * $-$ 2 $-modifications is Q-system complete, whenever $\\\\mcal D$ is Q-system complete. We use this result to provide a characterisation of Q-system complete categories in terms of $ * $-$ 2 $-functors and to prove that the $ 2 $-category of actions of a unitary fusion category $\\\\mcal C$ on C*-algebras is Q-system complete.\",\"PeriodicalId\":54951,\"journal\":{\"name\":\"International Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129167x23500738\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0129167x23500738","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
A Q-system is a unitary version of a separable Frobenius algebra object in a C*-tensor category or a C*-2-category. We prove that, for C*-2-categories $\mcal C$ and $\mcal D$, the C*-2-category $\textbf{Fun}(\mcal C, \mcal D)$ of $ * $-$ 2 $-functors, $ * $-$ 2 $-transformations and $ * $-$ 2 $-modifications is Q-system complete, whenever $\mcal D$ is Q-system complete. We use this result to provide a characterisation of Q-system complete categories in terms of $ * $-$ 2 $-functors and to prove that the $ 2 $-category of actions of a unitary fusion category $\mcal C$ on C*-algebras is Q-system complete.
期刊介绍:
The International Journal of Mathematics publishes original papers in mathematics in general, but giving a preference to those in the areas of mathematics represented by the editorial board. The journal has been published monthly except in June and December to bring out new results without delay. Occasionally, expository papers of exceptional value may also be published. The first issue appeared in March 1990.