{"title":"胚乳发育:细胞化和细胞命运规范。","authors":"O. Olsen","doi":"10.1146/ANNUREV.ARPLANT.52.1.233","DOIUrl":null,"url":null,"abstract":"The endosperm develops from the central cell of the megagametophyte after introduction of the second male gamete into the diploid central cell. Of the three forms of endosperm in angiosperms, the nuclear type is prevalent in economically important species, including the cereals. Landmarks in nuclear endosperm development are the coenocytic, cellularization, differentiation, and maturation stages. The differentiated endosperm contains four major cell types: starchy endosperm, aleurone, transfer cells, and the cells of the embryo surrounding region. Recent research has demonstrated that the first two phases of endosperm occur via mechanisms that are conserved among all groups of angiosperms, involving directed nuclear migration during the coenocytic stage and anticlinal cell wall deposition by cytoplasmic phragmoplasts formed in interzones between radial microtubular systems emanating from nuclear membranes. Complete cellularization of the endosperm coenocyte is achieved through centripetal growth of cell files, extending to the center of the endosperm cavity. Key points in cell cycle control and control of the MT (microtubular) cytoskeletal apparatus central to endosperm development are discussed. Specification of cell fates in the cereal endosperm appears to occur via positional signaling; cells in peripheral positions, except over the main vascular tissues, assume aleurone cell fate. Cells over the main vascular tissue become transfer cells and all interior cells become starchy endosperm cells. Studies in maize have implicated Crinkly4, a protein receptor kinase-like molecule, in aleurone cell fate specification.","PeriodicalId":80493,"journal":{"name":"Annual review of plant physiology and plant molecular biology","volume":"52 1","pages":"233-267"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/ANNUREV.ARPLANT.52.1.233","citationCount":"355","resultStr":"{\"title\":\"ENDOSPERM DEVELOPMENT: Cellularization and Cell Fate Specification.\",\"authors\":\"O. Olsen\",\"doi\":\"10.1146/ANNUREV.ARPLANT.52.1.233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The endosperm develops from the central cell of the megagametophyte after introduction of the second male gamete into the diploid central cell. Of the three forms of endosperm in angiosperms, the nuclear type is prevalent in economically important species, including the cereals. Landmarks in nuclear endosperm development are the coenocytic, cellularization, differentiation, and maturation stages. The differentiated endosperm contains four major cell types: starchy endosperm, aleurone, transfer cells, and the cells of the embryo surrounding region. Recent research has demonstrated that the first two phases of endosperm occur via mechanisms that are conserved among all groups of angiosperms, involving directed nuclear migration during the coenocytic stage and anticlinal cell wall deposition by cytoplasmic phragmoplasts formed in interzones between radial microtubular systems emanating from nuclear membranes. Complete cellularization of the endosperm coenocyte is achieved through centripetal growth of cell files, extending to the center of the endosperm cavity. Key points in cell cycle control and control of the MT (microtubular) cytoskeletal apparatus central to endosperm development are discussed. Specification of cell fates in the cereal endosperm appears to occur via positional signaling; cells in peripheral positions, except over the main vascular tissues, assume aleurone cell fate. Cells over the main vascular tissue become transfer cells and all interior cells become starchy endosperm cells. Studies in maize have implicated Crinkly4, a protein receptor kinase-like molecule, in aleurone cell fate specification.\",\"PeriodicalId\":80493,\"journal\":{\"name\":\"Annual review of plant physiology and plant molecular biology\",\"volume\":\"52 1\",\"pages\":\"233-267\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/ANNUREV.ARPLANT.52.1.233\",\"citationCount\":\"355\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of plant physiology and plant molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1146/ANNUREV.ARPLANT.52.1.233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of plant physiology and plant molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/ANNUREV.ARPLANT.52.1.233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ENDOSPERM DEVELOPMENT: Cellularization and Cell Fate Specification.
The endosperm develops from the central cell of the megagametophyte after introduction of the second male gamete into the diploid central cell. Of the three forms of endosperm in angiosperms, the nuclear type is prevalent in economically important species, including the cereals. Landmarks in nuclear endosperm development are the coenocytic, cellularization, differentiation, and maturation stages. The differentiated endosperm contains four major cell types: starchy endosperm, aleurone, transfer cells, and the cells of the embryo surrounding region. Recent research has demonstrated that the first two phases of endosperm occur via mechanisms that are conserved among all groups of angiosperms, involving directed nuclear migration during the coenocytic stage and anticlinal cell wall deposition by cytoplasmic phragmoplasts formed in interzones between radial microtubular systems emanating from nuclear membranes. Complete cellularization of the endosperm coenocyte is achieved through centripetal growth of cell files, extending to the center of the endosperm cavity. Key points in cell cycle control and control of the MT (microtubular) cytoskeletal apparatus central to endosperm development are discussed. Specification of cell fates in the cereal endosperm appears to occur via positional signaling; cells in peripheral positions, except over the main vascular tissues, assume aleurone cell fate. Cells over the main vascular tissue become transfer cells and all interior cells become starchy endosperm cells. Studies in maize have implicated Crinkly4, a protein receptor kinase-like molecule, in aleurone cell fate specification.