{"title":"内光发射的物理学及其在低能极限下的红外应用","authors":"Y. Lao, A. Perera","doi":"10.1155/2016/1832097","DOIUrl":null,"url":null,"abstract":"Internal photoemission (IP) correlates with processes in which carriers are photoexcited and transferred from one material to another. This characteristic allows characterizing the properties of the heterostructure, for example, the band parameters of a material and the interface between two materials. IP also involves the generation and collection of photocarriers, which leads to applications in the photodetectors. This review discusses the generic IP processes based on heterojunction structures, characterizing -type band structure and the band offset at the heterointerface, and infrared photodetection including a novel concept of photoresponse extension based on an energy transfer mechanism between hot and cold carriers.","PeriodicalId":7352,"journal":{"name":"Advances in Optoelectronics","volume":"2016 1","pages":"1-18"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2016/1832097","citationCount":"4","resultStr":"{\"title\":\"Physics of Internal Photoemission and Its Infrared Applications in the Low-Energy Limit\",\"authors\":\"Y. Lao, A. Perera\",\"doi\":\"10.1155/2016/1832097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Internal photoemission (IP) correlates with processes in which carriers are photoexcited and transferred from one material to another. This characteristic allows characterizing the properties of the heterostructure, for example, the band parameters of a material and the interface between two materials. IP also involves the generation and collection of photocarriers, which leads to applications in the photodetectors. This review discusses the generic IP processes based on heterojunction structures, characterizing -type band structure and the band offset at the heterointerface, and infrared photodetection including a novel concept of photoresponse extension based on an energy transfer mechanism between hot and cold carriers.\",\"PeriodicalId\":7352,\"journal\":{\"name\":\"Advances in Optoelectronics\",\"volume\":\"2016 1\",\"pages\":\"1-18\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2016/1832097\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Optoelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2016/1832097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2016/1832097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Physics of Internal Photoemission and Its Infrared Applications in the Low-Energy Limit
Internal photoemission (IP) correlates with processes in which carriers are photoexcited and transferred from one material to another. This characteristic allows characterizing the properties of the heterostructure, for example, the band parameters of a material and the interface between two materials. IP also involves the generation and collection of photocarriers, which leads to applications in the photodetectors. This review discusses the generic IP processes based on heterojunction structures, characterizing -type band structure and the band offset at the heterointerface, and infrared photodetection including a novel concept of photoresponse extension based on an energy transfer mechanism between hot and cold carriers.
期刊介绍:
Advances in OptoElectronics is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of optoelectronics.