Xue Yang, Xiang Liu, Si Chen, Guangmin Liu, Shuyan Wu, Chunli Wan
{"title":"基于β-环糊精和碱性处理的食物垃圾和污水污泥共消化生产挥发性脂肪酸","authors":"Xue Yang, Xiang Liu, Si Chen, Guangmin Liu, Shuyan Wu, Chunli Wan","doi":"10.1155/2016/1698163","DOIUrl":null,"url":null,"abstract":"Volatile fatty acids (VFAs) are preferred valuable resources, which can be produced from anaerobic digestion process. This study presents a novel technology using β-cyclodextrins (β-CD) pretreatment integrated alkaline method to enhance VFAs production from codigestion of food waste and sewage sludge. Experiment results showed that optimized ratio of food waste to sewage sludge was 3 : 2 because it provided adequate organic substance and seed microorganisms. Based on this optimized ratio, the integrated treatment of alkaline pH 10 and β-CD addition (0.2 g/g TS) performed the best enhancement on VFAs production, and the maximum VFAs production was 8631.7 mg/L which was 6.13, 1.38, and 1.57 times higher than that of control, initial pH 10, and 0.2 g β-CD/g TS treatment, respectively. Furthermore, the hydrolysis rate of protein and polysaccharides was greatly improved in integration treatment, which was 1.18–3.45 times higher than that of other tests. Though the VFAs production and hydrolysis of polymeric organics were highly enhanced, the primary bacterial communities with different treatments did not show substantial differences.","PeriodicalId":49105,"journal":{"name":"Archaea-An International Microbiological Journal","volume":"2016 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2016-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2016/1698163","citationCount":"11","resultStr":"{\"title\":\"Volatile Fatty Acids Production from Codigestion of Food Waste and Sewage Sludge Based on β-Cyclodextrins and Alkaline Treatments\",\"authors\":\"Xue Yang, Xiang Liu, Si Chen, Guangmin Liu, Shuyan Wu, Chunli Wan\",\"doi\":\"10.1155/2016/1698163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Volatile fatty acids (VFAs) are preferred valuable resources, which can be produced from anaerobic digestion process. This study presents a novel technology using β-cyclodextrins (β-CD) pretreatment integrated alkaline method to enhance VFAs production from codigestion of food waste and sewage sludge. Experiment results showed that optimized ratio of food waste to sewage sludge was 3 : 2 because it provided adequate organic substance and seed microorganisms. Based on this optimized ratio, the integrated treatment of alkaline pH 10 and β-CD addition (0.2 g/g TS) performed the best enhancement on VFAs production, and the maximum VFAs production was 8631.7 mg/L which was 6.13, 1.38, and 1.57 times higher than that of control, initial pH 10, and 0.2 g β-CD/g TS treatment, respectively. Furthermore, the hydrolysis rate of protein and polysaccharides was greatly improved in integration treatment, which was 1.18–3.45 times higher than that of other tests. Though the VFAs production and hydrolysis of polymeric organics were highly enhanced, the primary bacterial communities with different treatments did not show substantial differences.\",\"PeriodicalId\":49105,\"journal\":{\"name\":\"Archaea-An International Microbiological Journal\",\"volume\":\"2016 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2016-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2016/1698163\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archaea-An International Microbiological Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1155/2016/1698163\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archaea-An International Microbiological Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1155/2016/1698163","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Volatile Fatty Acids Production from Codigestion of Food Waste and Sewage Sludge Based on β-Cyclodextrins and Alkaline Treatments
Volatile fatty acids (VFAs) are preferred valuable resources, which can be produced from anaerobic digestion process. This study presents a novel technology using β-cyclodextrins (β-CD) pretreatment integrated alkaline method to enhance VFAs production from codigestion of food waste and sewage sludge. Experiment results showed that optimized ratio of food waste to sewage sludge was 3 : 2 because it provided adequate organic substance and seed microorganisms. Based on this optimized ratio, the integrated treatment of alkaline pH 10 and β-CD addition (0.2 g/g TS) performed the best enhancement on VFAs production, and the maximum VFAs production was 8631.7 mg/L which was 6.13, 1.38, and 1.57 times higher than that of control, initial pH 10, and 0.2 g β-CD/g TS treatment, respectively. Furthermore, the hydrolysis rate of protein and polysaccharides was greatly improved in integration treatment, which was 1.18–3.45 times higher than that of other tests. Though the VFAs production and hydrolysis of polymeric organics were highly enhanced, the primary bacterial communities with different treatments did not show substantial differences.
期刊介绍:
Archaea is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles dealing with all aspects of archaea, including environmental adaptation, enzymology, genetics and genomics, metabolism, molecular biology, molecular ecology, phylogeny, and ultrastructure. Bioinformatics studies and biotechnological implications of archaea will be considered. Published since 2002, Archaea provides a unique venue for exchanging information about these extraordinary prokaryotes.