{"title":"两种不同数学模型下佩服飞机纵向飞行平衡路径振荡敏感性分析","authors":"S. Balint, A. Balint, A. Ionita","doi":"10.1155/2009/842656","DOIUrl":null,"url":null,"abstract":"The oscillation susceptibility of the ADMIRE aircraft along the path of longitudinal flight equilibriums is analyzed numerically in the general and in a simplified flight model. More precisely, the longitudinal flight equilibriums, the stability of these equilibriums, and the existence of bifurcations along the path of these equilibriums are researched in both models. Maneuvers and appropriate piloting tasks for the touch-down moment are simulated in both models. The computed results obtained in the models are compared in order to see if the movement concerning the landing phase computed in the simplified model is similar to that computed in the general model. The similarity we find is not a proof of the structural stability of the simplified system, what as far we know never been made, but can increase the confidence that the simplified system correctly describes the real phenomenon.","PeriodicalId":30100,"journal":{"name":"Differential Equations and Nonlinear Mechanics","volume":"9 1","pages":"1-26"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2009/842656","citationCount":"10","resultStr":"{\"title\":\"Oscillation Susceptibility Analysis of the ADMIRE Aircraft along the Path of Longitudinal Flight Equilibriums in Two Different Mathematical Models\",\"authors\":\"S. Balint, A. Balint, A. Ionita\",\"doi\":\"10.1155/2009/842656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The oscillation susceptibility of the ADMIRE aircraft along the path of longitudinal flight equilibriums is analyzed numerically in the general and in a simplified flight model. More precisely, the longitudinal flight equilibriums, the stability of these equilibriums, and the existence of bifurcations along the path of these equilibriums are researched in both models. Maneuvers and appropriate piloting tasks for the touch-down moment are simulated in both models. The computed results obtained in the models are compared in order to see if the movement concerning the landing phase computed in the simplified model is similar to that computed in the general model. The similarity we find is not a proof of the structural stability of the simplified system, what as far we know never been made, but can increase the confidence that the simplified system correctly describes the real phenomenon.\",\"PeriodicalId\":30100,\"journal\":{\"name\":\"Differential Equations and Nonlinear Mechanics\",\"volume\":\"9 1\",\"pages\":\"1-26\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2009/842656\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Equations and Nonlinear Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2009/842656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations and Nonlinear Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2009/842656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Oscillation Susceptibility Analysis of the ADMIRE Aircraft along the Path of Longitudinal Flight Equilibriums in Two Different Mathematical Models
The oscillation susceptibility of the ADMIRE aircraft along the path of longitudinal flight equilibriums is analyzed numerically in the general and in a simplified flight model. More precisely, the longitudinal flight equilibriums, the stability of these equilibriums, and the existence of bifurcations along the path of these equilibriums are researched in both models. Maneuvers and appropriate piloting tasks for the touch-down moment are simulated in both models. The computed results obtained in the models are compared in order to see if the movement concerning the landing phase computed in the simplified model is similar to that computed in the general model. The similarity we find is not a proof of the structural stability of the simplified system, what as far we know never been made, but can increase the confidence that the simplified system correctly describes the real phenomenon.