Naveen M. Gokavi, Vijay P. Pattar, Atmanand M. Bagoji, S. Nandibewoor
{"title":"用玻碳电极方波伏安法测定药品和实物样品中的2-硫脲嘧啶","authors":"Naveen M. Gokavi, Vijay P. Pattar, Atmanand M. Bagoji, S. Nandibewoor","doi":"10.1155/2013/627854","DOIUrl":null,"url":null,"abstract":"A simple and rapid method was developed using cyclic and square wave voltammetric techniques for the determination of trace-level sulfur containing compound, 2-thiouracil, at a glassy carbon electrode. 2-thiouracil produced two anodic peaks at 0.334 V and 1.421 V and a cathodic peak at −0.534 V. The square wave voltammetry of 2-thiouracil gave a good linear response in the range of 1–20 μM with a detection limit of 0.16 μM and quantification limit of 0.53 μM (0.0679 μg/g), which is in good agreement as per IUPAC definition of trace component analysis (100 μg/g). The obtained recoveries range from 98.10% to 102.1%. The proposed method was used successfully for its quantitative determination in pharmaceutical formulations and urine as real samples.","PeriodicalId":13933,"journal":{"name":"International journal of electrochemistry","volume":"2013 1","pages":"1-8"},"PeriodicalIF":2.3000,"publicationDate":"2013-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/627854","citationCount":"10","resultStr":"{\"title\":\"Square Wave Voltammetric Determination of 2-Thiouracil in Pharmaceuticals and Real Samples Using Glassy Carbon Electrode\",\"authors\":\"Naveen M. Gokavi, Vijay P. Pattar, Atmanand M. Bagoji, S. Nandibewoor\",\"doi\":\"10.1155/2013/627854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A simple and rapid method was developed using cyclic and square wave voltammetric techniques for the determination of trace-level sulfur containing compound, 2-thiouracil, at a glassy carbon electrode. 2-thiouracil produced two anodic peaks at 0.334 V and 1.421 V and a cathodic peak at −0.534 V. The square wave voltammetry of 2-thiouracil gave a good linear response in the range of 1–20 μM with a detection limit of 0.16 μM and quantification limit of 0.53 μM (0.0679 μg/g), which is in good agreement as per IUPAC definition of trace component analysis (100 μg/g). The obtained recoveries range from 98.10% to 102.1%. The proposed method was used successfully for its quantitative determination in pharmaceutical formulations and urine as real samples.\",\"PeriodicalId\":13933,\"journal\":{\"name\":\"International journal of electrochemistry\",\"volume\":\"2013 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2013-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2013/627854\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of electrochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/627854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/627854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Square Wave Voltammetric Determination of 2-Thiouracil in Pharmaceuticals and Real Samples Using Glassy Carbon Electrode
A simple and rapid method was developed using cyclic and square wave voltammetric techniques for the determination of trace-level sulfur containing compound, 2-thiouracil, at a glassy carbon electrode. 2-thiouracil produced two anodic peaks at 0.334 V and 1.421 V and a cathodic peak at −0.534 V. The square wave voltammetry of 2-thiouracil gave a good linear response in the range of 1–20 μM with a detection limit of 0.16 μM and quantification limit of 0.53 μM (0.0679 μg/g), which is in good agreement as per IUPAC definition of trace component analysis (100 μg/g). The obtained recoveries range from 98.10% to 102.1%. The proposed method was used successfully for its quantitative determination in pharmaceutical formulations and urine as real samples.