论用曲率证明稳定性

C. McCluskey
{"title":"论用曲率证明稳定性","authors":"C. McCluskey","doi":"10.1155/2008/745242","DOIUrl":null,"url":null,"abstract":"A new approach for demonstrating the global stability of ordinary differential equations is given. It is shown that if the curvature of solutions is bounded on some set, then any nonconstant orbits that remain in the set, must contain points that lie some minimum distance apart from each other. This is used to establish a negative-criterion for periodic orbits. This is extended to give a method of proving an equilibrium to be globally stable. The approach can also be used to rule out the sudden appearance of large-amplitude periodic orbits.","PeriodicalId":30100,"journal":{"name":"Differential Equations and Nonlinear Mechanics","volume":"2008 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2008/745242","citationCount":"2","resultStr":"{\"title\":\"On Using Curvature to Demonstrate Stability\",\"authors\":\"C. McCluskey\",\"doi\":\"10.1155/2008/745242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new approach for demonstrating the global stability of ordinary differential equations is given. It is shown that if the curvature of solutions is bounded on some set, then any nonconstant orbits that remain in the set, must contain points that lie some minimum distance apart from each other. This is used to establish a negative-criterion for periodic orbits. This is extended to give a method of proving an equilibrium to be globally stable. The approach can also be used to rule out the sudden appearance of large-amplitude periodic orbits.\",\"PeriodicalId\":30100,\"journal\":{\"name\":\"Differential Equations and Nonlinear Mechanics\",\"volume\":\"2008 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2008/745242\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Equations and Nonlinear Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2008/745242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations and Nonlinear Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2008/745242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

给出了一种证明常微分方程全局稳定性的新方法。证明了如果解的曲率在某集合上有界,则在该集合中存在的任何非常数轨道,都必须包含彼此相距有最小距离的点。这被用来建立周期轨道的负准则。将此推广,给出了一种证明均衡全局稳定的方法。这种方法也可以用来排除大振幅周期轨道的突然出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Using Curvature to Demonstrate Stability
A new approach for demonstrating the global stability of ordinary differential equations is given. It is shown that if the curvature of solutions is bounded on some set, then any nonconstant orbits that remain in the set, must contain points that lie some minimum distance apart from each other. This is used to establish a negative-criterion for periodic orbits. This is extended to give a method of proving an equilibrium to be globally stable. The approach can also be used to rule out the sudden appearance of large-amplitude periodic orbits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信