高维非参数回归中的Lasso和Dantzig选择器

IF 0.3 Q4 MATHEMATICS, APPLIED
Shiqing Wang, Limin Su
{"title":"高维非参数回归中的Lasso和Dantzig选择器","authors":"Shiqing Wang, Limin Su","doi":"10.1155/2013/571361","DOIUrl":null,"url":null,"abstract":"During the last few years, a great deal of attention has been focused on Lasso and Dantzig selector in high dimensional linear regression when the number of variables can be much larger than the sample size. Under a sparsity scenario, Bickel et al. (2009) showed that the Lasso estimator and the Dantzig selector exhibit similar behavior, and derived oracle inequalities for the prediction risk in the general nonparametric regression model, as well as bounds on the L_p estimation loss in the linear model. The Assumption RE (s,m,c) and Assumption RE (s,c) play a significant role in their paper. In this paper, the assumptions equivalent with Assumption RE and Assumption RE are given. More precise oracle inequalities for the prediction risk in the general nonparametric regression model and bounds on the L_p estimation loss in the linear model are derived when the number of variables can be much larger than the sample size.","PeriodicalId":44573,"journal":{"name":"International Journal of Applied Mathematics & Statistics","volume":"42 1","pages":"103-118"},"PeriodicalIF":0.3000,"publicationDate":"2013-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/571361","citationCount":"7","resultStr":"{\"title\":\"Simultaneous Lasso and Dantzig Selector in High Dimensional Nonparametric Regression\",\"authors\":\"Shiqing Wang, Limin Su\",\"doi\":\"10.1155/2013/571361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the last few years, a great deal of attention has been focused on Lasso and Dantzig selector in high dimensional linear regression when the number of variables can be much larger than the sample size. Under a sparsity scenario, Bickel et al. (2009) showed that the Lasso estimator and the Dantzig selector exhibit similar behavior, and derived oracle inequalities for the prediction risk in the general nonparametric regression model, as well as bounds on the L_p estimation loss in the linear model. The Assumption RE (s,m,c) and Assumption RE (s,c) play a significant role in their paper. In this paper, the assumptions equivalent with Assumption RE and Assumption RE are given. More precise oracle inequalities for the prediction risk in the general nonparametric regression model and bounds on the L_p estimation loss in the linear model are derived when the number of variables can be much larger than the sample size.\",\"PeriodicalId\":44573,\"journal\":{\"name\":\"International Journal of Applied Mathematics & Statistics\",\"volume\":\"42 1\",\"pages\":\"103-118\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2013-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2013/571361\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mathematics & Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/571361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics & Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/571361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 7

摘要

在过去的几年里,Lasso和Dantzig选择器在高维线性回归中受到了很大的关注,当变量的数量远远大于样本量时。在稀疏情况下,Bickel et al.(2009)表明Lasso估计器和Dantzig选择器表现出相似的行为,并推导出一般非参数回归模型中预测风险的oracle不等式,以及线性模型中L_p估计损失的界。假设RE (s,m,c)和假设RE (s,c)在他们的论文中发挥了重要作用。本文给出了与假设RE和假设RE等价的假设。当变量数量远远大于样本量时,导出了一般非参数回归模型中预测风险的更精确的oracle不等式和线性模型中L_p估计损失的界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simultaneous Lasso and Dantzig Selector in High Dimensional Nonparametric Regression
During the last few years, a great deal of attention has been focused on Lasso and Dantzig selector in high dimensional linear regression when the number of variables can be much larger than the sample size. Under a sparsity scenario, Bickel et al. (2009) showed that the Lasso estimator and the Dantzig selector exhibit similar behavior, and derived oracle inequalities for the prediction risk in the general nonparametric regression model, as well as bounds on the L_p estimation loss in the linear model. The Assumption RE (s,m,c) and Assumption RE (s,c) play a significant role in their paper. In this paper, the assumptions equivalent with Assumption RE and Assumption RE are given. More precise oracle inequalities for the prediction risk in the general nonparametric regression model and bounds on the L_p estimation loss in the linear model are derived when the number of variables can be much larger than the sample size.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信