{"title":"基于源节流的公平性:多核存储系统的可配置高性能公平性基板","authors":"Eiman Ebrahimi, Chang Joo Lee, O. Mutlu, Y. Patt","doi":"10.1145/2166879.2166881","DOIUrl":null,"url":null,"abstract":"Cores in chip-multiprocessors (CMPs) share multiple memory subsystem resources. If resource sharing is unfair, some applications can be delayed significantly while others are unfairly prioritized. Previous research proposed separate fairness mechanisms for each resource. Such resource-based fairness mechanisms implemented independently in each resource can make contradictory decisions, leading to low fairness and performance loss. Therefore, a coordinated mechanism that provides fairness in the entire shared memory system is desirable.\n This article proposes a new approach that provides fairness in the entire shared memory system, thereby eliminating the need for and complexity of developing fairness mechanisms for each resource. Our technique, Fairness via Source Throttling (FST), estimates unfairness in the entire memory system. If unfairness is above a system-software-set threshold, FST throttles down cores causing unfairness by limiting the number of requests they create and the frequency at which they do. As such, our source-based fairness control ensures fairness decisions are made in tandem in the entire memory system. FST enforces thread priorities/weights, and enables system-software to enforce different fairness objectives in the memory system.\n Our evaluations show that FST provides the best system fairness and performance compared to three systems with state-of-the-art fairness mechanisms implemented in both shared caches and memory controllers.","PeriodicalId":50918,"journal":{"name":"ACM Transactions on Computer Systems","volume":"30 1","pages":"7"},"PeriodicalIF":2.0000,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/2166879.2166881","citationCount":"21","resultStr":"{\"title\":\"Fairness via Source Throttling: A Configurable and High-Performance Fairness Substrate for Multicore Memory Systems\",\"authors\":\"Eiman Ebrahimi, Chang Joo Lee, O. Mutlu, Y. Patt\",\"doi\":\"10.1145/2166879.2166881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cores in chip-multiprocessors (CMPs) share multiple memory subsystem resources. If resource sharing is unfair, some applications can be delayed significantly while others are unfairly prioritized. Previous research proposed separate fairness mechanisms for each resource. Such resource-based fairness mechanisms implemented independently in each resource can make contradictory decisions, leading to low fairness and performance loss. Therefore, a coordinated mechanism that provides fairness in the entire shared memory system is desirable.\\n This article proposes a new approach that provides fairness in the entire shared memory system, thereby eliminating the need for and complexity of developing fairness mechanisms for each resource. Our technique, Fairness via Source Throttling (FST), estimates unfairness in the entire memory system. If unfairness is above a system-software-set threshold, FST throttles down cores causing unfairness by limiting the number of requests they create and the frequency at which they do. As such, our source-based fairness control ensures fairness decisions are made in tandem in the entire memory system. FST enforces thread priorities/weights, and enables system-software to enforce different fairness objectives in the memory system.\\n Our evaluations show that FST provides the best system fairness and performance compared to three systems with state-of-the-art fairness mechanisms implemented in both shared caches and memory controllers.\",\"PeriodicalId\":50918,\"journal\":{\"name\":\"ACM Transactions on Computer Systems\",\"volume\":\"30 1\",\"pages\":\"7\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2012-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1145/2166879.2166881\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computer Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/2166879.2166881\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computer Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/2166879.2166881","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Fairness via Source Throttling: A Configurable and High-Performance Fairness Substrate for Multicore Memory Systems
Cores in chip-multiprocessors (CMPs) share multiple memory subsystem resources. If resource sharing is unfair, some applications can be delayed significantly while others are unfairly prioritized. Previous research proposed separate fairness mechanisms for each resource. Such resource-based fairness mechanisms implemented independently in each resource can make contradictory decisions, leading to low fairness and performance loss. Therefore, a coordinated mechanism that provides fairness in the entire shared memory system is desirable.
This article proposes a new approach that provides fairness in the entire shared memory system, thereby eliminating the need for and complexity of developing fairness mechanisms for each resource. Our technique, Fairness via Source Throttling (FST), estimates unfairness in the entire memory system. If unfairness is above a system-software-set threshold, FST throttles down cores causing unfairness by limiting the number of requests they create and the frequency at which they do. As such, our source-based fairness control ensures fairness decisions are made in tandem in the entire memory system. FST enforces thread priorities/weights, and enables system-software to enforce different fairness objectives in the memory system.
Our evaluations show that FST provides the best system fairness and performance compared to three systems with state-of-the-art fairness mechanisms implemented in both shared caches and memory controllers.
期刊介绍:
ACM Transactions on Computer Systems (TOCS) presents research and development results on the design, implementation, analysis, evaluation, and use of computer systems and systems software. The term "computer systems" is interpreted broadly and includes operating systems, systems architecture and hardware, distributed systems, optimizing compilers, and the interaction between systems and computer networks. Articles appearing in TOCS will tend either to present new techniques and concepts, or to report on experiences and experiments with actual systems. Insights useful to system designers, builders, and users will be emphasized.
TOCS publishes research and technical papers, both short and long. It includes technical correspondence to permit commentary on technical topics and on previously published papers.