用遗传算法鉴定人类miRNA靶点

Q2 Medicine
Kalle Karhu, S. Khuri, Juho Mäkinen, J. Tarhio
{"title":"用遗传算法鉴定人类miRNA靶点","authors":"Kalle Karhu, S. Khuri, Juho Mäkinen, J. Tarhio","doi":"10.1145/1722024.1722059","DOIUrl":null,"url":null,"abstract":"MicroRNAs (miRNAs) play an important role in eukaryotic gene regulation. Although thousands of miRNAs have been identified in laboratories around the world, most of their targets still remain unknown. Different computational techniques exist to predict miRNA targets. In this article, we propose a new method for identifying human miRNA-mRNA interactions based on a genetic algorithm. Our cross-validation results indicate that the genetic algorithm-based miRNA target predictor outperforms the MiRanda package as evidenced by high true positive rates and moderate false positive rates.","PeriodicalId":39379,"journal":{"name":"In Silico Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/1722024.1722059","citationCount":"3","resultStr":"{\"title\":\"Identifying human miRNA targets with a genetic algorithm\",\"authors\":\"Kalle Karhu, S. Khuri, Juho Mäkinen, J. Tarhio\",\"doi\":\"10.1145/1722024.1722059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MicroRNAs (miRNAs) play an important role in eukaryotic gene regulation. Although thousands of miRNAs have been identified in laboratories around the world, most of their targets still remain unknown. Different computational techniques exist to predict miRNA targets. In this article, we propose a new method for identifying human miRNA-mRNA interactions based on a genetic algorithm. Our cross-validation results indicate that the genetic algorithm-based miRNA target predictor outperforms the MiRanda package as evidenced by high true positive rates and moderate false positive rates.\",\"PeriodicalId\":39379,\"journal\":{\"name\":\"In Silico Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1145/1722024.1722059\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In Silico Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1722024.1722059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Silico Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1722024.1722059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 3

摘要

MicroRNAs (miRNAs)在真核生物基因调控中发挥着重要作用。尽管世界各地的实验室已经发现了数千种mirna,但它们的大多数靶标仍然未知。存在不同的计算技术来预测miRNA靶标。在本文中,我们提出了一种基于遗传算法识别人类miRNA-mRNA相互作用的新方法。我们的交叉验证结果表明,基于遗传算法的miRNA目标预测器优于MiRanda包,这证明了高真阳性率和中等假阳性率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying human miRNA targets with a genetic algorithm
MicroRNAs (miRNAs) play an important role in eukaryotic gene regulation. Although thousands of miRNAs have been identified in laboratories around the world, most of their targets still remain unknown. Different computational techniques exist to predict miRNA targets. In this article, we propose a new method for identifying human miRNA-mRNA interactions based on a genetic algorithm. Our cross-validation results indicate that the genetic algorithm-based miRNA target predictor outperforms the MiRanda package as evidenced by high true positive rates and moderate false positive rates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
In Silico Biology
In Silico Biology Computer Science-Computational Theory and Mathematics
CiteScore
2.20
自引率
0.00%
发文量
1
期刊介绍: The considerable "algorithmic complexity" of biological systems requires a huge amount of detailed information for their complete description. Although far from being complete, the overwhelming quantity of small pieces of information gathered for all kind of biological systems at the molecular and cellular level requires computational tools to be adequately stored and interpreted. Interpretation of data means to abstract them as much as allowed to provide a systematic, an integrative view of biology. Most of the presently available scientific journals focus either on accumulating more data from elaborate experimental approaches, or on presenting new algorithms for the interpretation of these data. Both approaches are meritorious.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信