{"title":"鉴定蛋白质-蛋白质复合物界面的性质","authors":"Pralay Mitra","doi":"10.1145/1722024.1722040","DOIUrl":null,"url":null,"abstract":"The role of molecular recognition is critical to the proper self-assembly of biological macromolecules and their function. Shape complementarity of the mutual recognition interfaces is one of the important factors that guide this interaction. The lock-and-key mechanism involving enzyme-substrate is a classical hallmark of shape complementarities at work in biochemical reaction. Recognition principles between macromolecular entities, however, has been difficult formulate. Sensitive surface complementarity recognition algorithms are computationally prohibitive, while accuracy of the heuristic methods is limited by the choice of proper biochemical information. This is a major drawback in understanding macromolecular recognition which entails critical assessment of biochemical information involving large interacting interfaces. Here we data mine on a number of biochemical parameters to highlight their individual merits and demerits and propose specific properties suitable for designing heuristic algorithms. The work is expected to find utility within bioinformatics algorithms seeking docking macromolecules and designing of protein complex interfaces.","PeriodicalId":39379,"journal":{"name":"In Silico Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/1722024.1722040","citationCount":"2","resultStr":"{\"title\":\"Identifying the nature of the interface in protein-protein complexes\",\"authors\":\"Pralay Mitra\",\"doi\":\"10.1145/1722024.1722040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The role of molecular recognition is critical to the proper self-assembly of biological macromolecules and their function. Shape complementarity of the mutual recognition interfaces is one of the important factors that guide this interaction. The lock-and-key mechanism involving enzyme-substrate is a classical hallmark of shape complementarities at work in biochemical reaction. Recognition principles between macromolecular entities, however, has been difficult formulate. Sensitive surface complementarity recognition algorithms are computationally prohibitive, while accuracy of the heuristic methods is limited by the choice of proper biochemical information. This is a major drawback in understanding macromolecular recognition which entails critical assessment of biochemical information involving large interacting interfaces. Here we data mine on a number of biochemical parameters to highlight their individual merits and demerits and propose specific properties suitable for designing heuristic algorithms. The work is expected to find utility within bioinformatics algorithms seeking docking macromolecules and designing of protein complex interfaces.\",\"PeriodicalId\":39379,\"journal\":{\"name\":\"In Silico Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1145/1722024.1722040\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In Silico Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1722024.1722040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Silico Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1722024.1722040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Identifying the nature of the interface in protein-protein complexes
The role of molecular recognition is critical to the proper self-assembly of biological macromolecules and their function. Shape complementarity of the mutual recognition interfaces is one of the important factors that guide this interaction. The lock-and-key mechanism involving enzyme-substrate is a classical hallmark of shape complementarities at work in biochemical reaction. Recognition principles between macromolecular entities, however, has been difficult formulate. Sensitive surface complementarity recognition algorithms are computationally prohibitive, while accuracy of the heuristic methods is limited by the choice of proper biochemical information. This is a major drawback in understanding macromolecular recognition which entails critical assessment of biochemical information involving large interacting interfaces. Here we data mine on a number of biochemical parameters to highlight their individual merits and demerits and propose specific properties suitable for designing heuristic algorithms. The work is expected to find utility within bioinformatics algorithms seeking docking macromolecules and designing of protein complex interfaces.
In Silico BiologyComputer Science-Computational Theory and Mathematics
CiteScore
2.20
自引率
0.00%
发文量
1
期刊介绍:
The considerable "algorithmic complexity" of biological systems requires a huge amount of detailed information for their complete description. Although far from being complete, the overwhelming quantity of small pieces of information gathered for all kind of biological systems at the molecular and cellular level requires computational tools to be adequately stored and interpreted. Interpretation of data means to abstract them as much as allowed to provide a systematic, an integrative view of biology. Most of the presently available scientific journals focus either on accumulating more data from elaborate experimental approaches, or on presenting new algorithms for the interpretation of these data. Both approaches are meritorious.