{"title":"使用第一性原理方法和统计评分预测蛋白质相互作用","authors":"M. Pradhan, P. Gandra, M. Palakal","doi":"10.1145/1722024.1722038","DOIUrl":null,"url":null,"abstract":"Proteins are a combination of different PDB structures. To understand the interactions of the proteins, we have proposed a methodology that integrates the first principle parameters for protein interaction along with the number of PDB structures defining these proteins. Annotating possibly interacting proteins pairs with their Pfam and GO domains increases the strength of each interaction and can identify the important link between the two proteins. We propose a novel technique to predict protein interactions by integrating a protein's physico-chemical properties and the number of PDB structures that uses sliding window algorithm to compute the optimal interacting score. The proposed method identified ~94% true prediction from a known set of interacting protein dataset and a 100% prediction for non-interacting dataset. The prediction model that was developed was applied to an unknown protein dataset and we identified a novel interacting protein pairs with high relevance.","PeriodicalId":39379,"journal":{"name":"In Silico Biology","volume":"1 1","pages":"11"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/1722024.1722038","citationCount":"1","resultStr":"{\"title\":\"Predicting protein-protein interactions using first principle methods and statistical scoring\",\"authors\":\"M. Pradhan, P. Gandra, M. Palakal\",\"doi\":\"10.1145/1722024.1722038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proteins are a combination of different PDB structures. To understand the interactions of the proteins, we have proposed a methodology that integrates the first principle parameters for protein interaction along with the number of PDB structures defining these proteins. Annotating possibly interacting proteins pairs with their Pfam and GO domains increases the strength of each interaction and can identify the important link between the two proteins. We propose a novel technique to predict protein interactions by integrating a protein's physico-chemical properties and the number of PDB structures that uses sliding window algorithm to compute the optimal interacting score. The proposed method identified ~94% true prediction from a known set of interacting protein dataset and a 100% prediction for non-interacting dataset. The prediction model that was developed was applied to an unknown protein dataset and we identified a novel interacting protein pairs with high relevance.\",\"PeriodicalId\":39379,\"journal\":{\"name\":\"In Silico Biology\",\"volume\":\"1 1\",\"pages\":\"11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1145/1722024.1722038\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In Silico Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1722024.1722038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Silico Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1722024.1722038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Predicting protein-protein interactions using first principle methods and statistical scoring
Proteins are a combination of different PDB structures. To understand the interactions of the proteins, we have proposed a methodology that integrates the first principle parameters for protein interaction along with the number of PDB structures defining these proteins. Annotating possibly interacting proteins pairs with their Pfam and GO domains increases the strength of each interaction and can identify the important link between the two proteins. We propose a novel technique to predict protein interactions by integrating a protein's physico-chemical properties and the number of PDB structures that uses sliding window algorithm to compute the optimal interacting score. The proposed method identified ~94% true prediction from a known set of interacting protein dataset and a 100% prediction for non-interacting dataset. The prediction model that was developed was applied to an unknown protein dataset and we identified a novel interacting protein pairs with high relevance.
In Silico BiologyComputer Science-Computational Theory and Mathematics
CiteScore
2.20
自引率
0.00%
发文量
1
期刊介绍:
The considerable "algorithmic complexity" of biological systems requires a huge amount of detailed information for their complete description. Although far from being complete, the overwhelming quantity of small pieces of information gathered for all kind of biological systems at the molecular and cellular level requires computational tools to be adequately stored and interpreted. Interpretation of data means to abstract them as much as allowed to provide a systematic, an integrative view of biology. Most of the presently available scientific journals focus either on accumulating more data from elaborate experimental approaches, or on presenting new algorithms for the interpretation of these data. Both approaches are meritorious.