{"title":"生物医学关联挖掘与验证","authors":"P. Gandra, M. Pradhan, M. Palakal","doi":"10.1145/1722024.1722035","DOIUrl":null,"url":null,"abstract":"During last decade, the data published in biomedical literature has increased exponentially. With this growth, it has become hard to manually read all the papers for required information. Many text mining algorithms and approaches have been developed to extract information from the existing literature. One such important information is to find the associations between functional terms like genes, proteins, drugs, diseases etc. These associations can be casual, explicit or implicit. One of the most common applications is to mine protein-protein interactions from Pubmed. The focus of the present study is to identify and validate implicit protein -- protein associations as these are hard to identify from literature. These associations, when detected automatically, are noisy and need to be validated for their biological significance. In the process of validating, these associations were passed through series of filters and an algorithm to remove the noise present in the data. In this study, we used 16 gene ids to retrieve 32,693 documents with 193,738 sentences related to regenerative biology from the Pubmed database. From these sentences, BioMap found 10004 explicit and 30,000 implicit protein interaction pairs that were validated using the proposed methodology. Finally 308 implicit pairs were identified as outcome of this methodology. These results indicate that the proposed methods can be effectively used for biological verification of implicit protein-protein interactions that are obtained through literature mining.","PeriodicalId":39379,"journal":{"name":"In Silico Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/1722024.1722035","citationCount":"2","resultStr":"{\"title\":\"Biomedical association mining and validation\",\"authors\":\"P. Gandra, M. Pradhan, M. Palakal\",\"doi\":\"10.1145/1722024.1722035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During last decade, the data published in biomedical literature has increased exponentially. With this growth, it has become hard to manually read all the papers for required information. Many text mining algorithms and approaches have been developed to extract information from the existing literature. One such important information is to find the associations between functional terms like genes, proteins, drugs, diseases etc. These associations can be casual, explicit or implicit. One of the most common applications is to mine protein-protein interactions from Pubmed. The focus of the present study is to identify and validate implicit protein -- protein associations as these are hard to identify from literature. These associations, when detected automatically, are noisy and need to be validated for their biological significance. In the process of validating, these associations were passed through series of filters and an algorithm to remove the noise present in the data. In this study, we used 16 gene ids to retrieve 32,693 documents with 193,738 sentences related to regenerative biology from the Pubmed database. From these sentences, BioMap found 10004 explicit and 30,000 implicit protein interaction pairs that were validated using the proposed methodology. Finally 308 implicit pairs were identified as outcome of this methodology. These results indicate that the proposed methods can be effectively used for biological verification of implicit protein-protein interactions that are obtained through literature mining.\",\"PeriodicalId\":39379,\"journal\":{\"name\":\"In Silico Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1145/1722024.1722035\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In Silico Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1722024.1722035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Silico Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1722024.1722035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
During last decade, the data published in biomedical literature has increased exponentially. With this growth, it has become hard to manually read all the papers for required information. Many text mining algorithms and approaches have been developed to extract information from the existing literature. One such important information is to find the associations between functional terms like genes, proteins, drugs, diseases etc. These associations can be casual, explicit or implicit. One of the most common applications is to mine protein-protein interactions from Pubmed. The focus of the present study is to identify and validate implicit protein -- protein associations as these are hard to identify from literature. These associations, when detected automatically, are noisy and need to be validated for their biological significance. In the process of validating, these associations were passed through series of filters and an algorithm to remove the noise present in the data. In this study, we used 16 gene ids to retrieve 32,693 documents with 193,738 sentences related to regenerative biology from the Pubmed database. From these sentences, BioMap found 10004 explicit and 30,000 implicit protein interaction pairs that were validated using the proposed methodology. Finally 308 implicit pairs were identified as outcome of this methodology. These results indicate that the proposed methods can be effectively used for biological verification of implicit protein-protein interactions that are obtained through literature mining.
In Silico BiologyComputer Science-Computational Theory and Mathematics
CiteScore
2.20
自引率
0.00%
发文量
1
期刊介绍:
The considerable "algorithmic complexity" of biological systems requires a huge amount of detailed information for their complete description. Although far from being complete, the overwhelming quantity of small pieces of information gathered for all kind of biological systems at the molecular and cellular level requires computational tools to be adequately stored and interpreted. Interpretation of data means to abstract them as much as allowed to provide a systematic, an integrative view of biology. Most of the presently available scientific journals focus either on accumulating more data from elaborate experimental approaches, or on presenting new algorithms for the interpretation of these data. Both approaches are meritorious.