大规模图着色的sat增强禁忌搜索

Q2 Mathematics
André Schidler, Stefan Szeider
{"title":"大规模图着色的sat增强禁忌搜索","authors":"André Schidler, Stefan Szeider","doi":"10.1145/3603112","DOIUrl":null,"url":null,"abstract":"Graph coloring is the problem of coloring the vertices of a graph with as few colors as possible, avoiding monochromatic edges. It is one of the most fundamental NP-hard computational problems. For decades researchers have developed exact and heuristic methods for graph coloring. While methods based on propositional satisfiability (SAT) feature prominently among these exact methods, the encoding size is prohibitive for large graphs. For such graphs, heuristic methods have been proposed, with tabu search among the most successful ones. In this article, we enhance tabu search for graph coloring within the SAT-based local improvement (SLIM) framework. Our hybrid algorithm incrementally improves a candidate solution by repeatedly selecting small subgraphs and coloring them optimally with a SAT solver. This approach scales to dense graphs with several hundred thousand vertices and over 1.5 billion edges. Our experimental evaluation shows that our hybrid algorithm beats state-of-the-art methods on large dense graphs.","PeriodicalId":53707,"journal":{"name":"Journal of Experimental Algorithmics","volume":"1 1","pages":"1 - 19"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SAT-Boosted Tabu Search for Coloring Massive Graphs\",\"authors\":\"André Schidler, Stefan Szeider\",\"doi\":\"10.1145/3603112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph coloring is the problem of coloring the vertices of a graph with as few colors as possible, avoiding monochromatic edges. It is one of the most fundamental NP-hard computational problems. For decades researchers have developed exact and heuristic methods for graph coloring. While methods based on propositional satisfiability (SAT) feature prominently among these exact methods, the encoding size is prohibitive for large graphs. For such graphs, heuristic methods have been proposed, with tabu search among the most successful ones. In this article, we enhance tabu search for graph coloring within the SAT-based local improvement (SLIM) framework. Our hybrid algorithm incrementally improves a candidate solution by repeatedly selecting small subgraphs and coloring them optimally with a SAT solver. This approach scales to dense graphs with several hundred thousand vertices and over 1.5 billion edges. Our experimental evaluation shows that our hybrid algorithm beats state-of-the-art methods on large dense graphs.\",\"PeriodicalId\":53707,\"journal\":{\"name\":\"Journal of Experimental Algorithmics\",\"volume\":\"1 1\",\"pages\":\"1 - 19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Algorithmics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3603112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Algorithmics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3603112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

图的着色问题是用尽可能少的颜色着色图的顶点,避免单色边。它是最基本的NP-hard计算问题之一。几十年来,研究人员开发了精确和启发式的图着色方法。虽然基于命题可满足性(SAT)的方法在这些精确方法中具有突出的特点,但编码大小对于大型图来说是令人望而却步的。对于这样的图,已经提出了启发式方法,禁忌搜索是最成功的方法之一。本文在基于sat的局部改进(SLIM)框架中增强了图着色的禁忌搜索。我们的混合算法通过重复选择小子图并使用SAT求解器对其进行最佳着色来逐步改进候选解。这种方法可以扩展到具有数十万个顶点和超过15亿个边的密集图。我们的实验评估表明,我们的混合算法在大型密集图上优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SAT-Boosted Tabu Search for Coloring Massive Graphs
Graph coloring is the problem of coloring the vertices of a graph with as few colors as possible, avoiding monochromatic edges. It is one of the most fundamental NP-hard computational problems. For decades researchers have developed exact and heuristic methods for graph coloring. While methods based on propositional satisfiability (SAT) feature prominently among these exact methods, the encoding size is prohibitive for large graphs. For such graphs, heuristic methods have been proposed, with tabu search among the most successful ones. In this article, we enhance tabu search for graph coloring within the SAT-based local improvement (SLIM) framework. Our hybrid algorithm incrementally improves a candidate solution by repeatedly selecting small subgraphs and coloring them optimally with a SAT solver. This approach scales to dense graphs with several hundred thousand vertices and over 1.5 billion edges. Our experimental evaluation shows that our hybrid algorithm beats state-of-the-art methods on large dense graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Experimental Algorithmics
Journal of Experimental Algorithmics Mathematics-Theoretical Computer Science
CiteScore
3.10
自引率
0.00%
发文量
29
期刊介绍: The ACM JEA is a high-quality, refereed, archival journal devoted to the study of discrete algorithms and data structures through a combination of experimentation and classical analysis and design techniques. It focuses on the following areas in algorithms and data structures: ■combinatorial optimization ■computational biology ■computational geometry ■graph manipulation ■graphics ■heuristics ■network design ■parallel processing ■routing and scheduling ■searching and sorting ■VLSI design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信