{"title":"底部有表面声源的声峡谷内的声辐射","authors":"K. Szemela","doi":"10.1142/S0218396X15500149","DOIUrl":null,"url":null,"abstract":"The sound radiation inside an acoustic canyon has been analyzed for a surface sound source located at the bottom. Based on rigorous mathematical manipulations, the formulas of a high computational efficiency describing the sound pressure and sound power have been obtained. They can be easily adapted to describe the sound radiation of an arbitrary system of sound sources. As an example of their application, the sound radiation of a piston has been investigated. The asymptotic formulas of the sound power modal coefficients have been obtained. They can be used to significantly improve the numerical calculation of the sound power.","PeriodicalId":54860,"journal":{"name":"Journal of Computational Acoustics","volume":"23 1","pages":"1550014"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S0218396X15500149","citationCount":"3","resultStr":"{\"title\":\"Sound Radiation Inside an Acoustic Canyon with a Surface Sound Source Located at the Bottom\",\"authors\":\"K. Szemela\",\"doi\":\"10.1142/S0218396X15500149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sound radiation inside an acoustic canyon has been analyzed for a surface sound source located at the bottom. Based on rigorous mathematical manipulations, the formulas of a high computational efficiency describing the sound pressure and sound power have been obtained. They can be easily adapted to describe the sound radiation of an arbitrary system of sound sources. As an example of their application, the sound radiation of a piston has been investigated. The asymptotic formulas of the sound power modal coefficients have been obtained. They can be used to significantly improve the numerical calculation of the sound power.\",\"PeriodicalId\":54860,\"journal\":{\"name\":\"Journal of Computational Acoustics\",\"volume\":\"23 1\",\"pages\":\"1550014\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1142/S0218396X15500149\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Acoustics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0218396X15500149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Acoustics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0218396X15500149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Sound Radiation Inside an Acoustic Canyon with a Surface Sound Source Located at the Bottom
The sound radiation inside an acoustic canyon has been analyzed for a surface sound source located at the bottom. Based on rigorous mathematical manipulations, the formulas of a high computational efficiency describing the sound pressure and sound power have been obtained. They can be easily adapted to describe the sound radiation of an arbitrary system of sound sources. As an example of their application, the sound radiation of a piston has been investigated. The asymptotic formulas of the sound power modal coefficients have been obtained. They can be used to significantly improve the numerical calculation of the sound power.
期刊介绍:
Currently known as Journal of Theoretical and Computational Acoustics (JTCA).The aim of this journal is to provide an international forum for the dissemination of the state-of-the-art information in the field of Computational Acoustics. Topics covered by this journal include research and tutorial contributions in OCEAN ACOUSTICS (a subject of active research in relation with sonar detection and the design of noiseless ships), SEISMO-ACOUSTICS (of concern to earthquake science and engineering, and also to those doing underground prospection like searching for petroleum), AEROACOUSTICS (which includes the analysis of noise created by aircraft), COMPUTATIONAL METHODS, and SUPERCOMPUTING. In addition to the traditional issues and problems in computational methods, the journal also considers theoretical research acoustics papers which lead to large-scale scientific computations. The journal strives to be flexible in the type of high quality papers it publishes and their format. Equally desirable are Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational acoustics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research in which other than strictly computational arguments may be important in establishing a basis for further developments. Tutorial review papers, covering some of the important issues in Computational Mathematical Methods, Scientific Computing, and their applications. Short notes, which present specific new results and techniques in a brief communication. The journal will occasionally publish significant contributions which are larger than the usual format for regular papers. Special issues which report results of high quality workshops in related areas and monographs of significant contributions in the Series of Computational Acoustics will also be published.