小坡度余弦形山丘上三维传播的正态分析

Q1 Mathematics
M. Ballard, B. Goldsberry, M. Isakson
{"title":"小坡度余弦形山丘上三维传播的正态分析","authors":"M. Ballard, B. Goldsberry, M. Isakson","doi":"10.1142/S0218396X15500058","DOIUrl":null,"url":null,"abstract":"Three-dimensional propagation over an infinitely long cosine shaped hill is examined using an approximate normal mode/parabolic equation hybrid model that includes mode coupling in the out-going direction. The slope of the hill is relatively shallow, but it is significant enough to produce both mode-coupling and horizontal refraction effects. In the first part of the paper, the modeling approach is described, and the solution is compared to results obtained with a finite element method to evaluate the accuracy of the solution in light of assumptions made in formulating the model. Then the calculated transmission loss is interpreted in terms of a modal decomposition of the field, and the solution from the hybrid model is compared to adiabatic and N × 2D solutions to assess the relative importance of horizontal refraction and mode-coupling effects. An analysis using a horizontal ray trace is presented to explain differences in the modal interference pattern observed between the 3D and N × 2D solutions. The detailed discussion provides a thorough explanation of the observed 3D propagation effects and demonstrates the usefulness of the approximate normal mode/parabolic equation hybrid model as a tool to understand measured transmission loss in complex environments.","PeriodicalId":54860,"journal":{"name":"Journal of Computational Acoustics","volume":"23 1","pages":"1550005"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S0218396X15500058","citationCount":"10","resultStr":"{\"title\":\"Normal mode analysis of three-dimensional propagation over a small-slope cosine shaped hill\",\"authors\":\"M. Ballard, B. Goldsberry, M. Isakson\",\"doi\":\"10.1142/S0218396X15500058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Three-dimensional propagation over an infinitely long cosine shaped hill is examined using an approximate normal mode/parabolic equation hybrid model that includes mode coupling in the out-going direction. The slope of the hill is relatively shallow, but it is significant enough to produce both mode-coupling and horizontal refraction effects. In the first part of the paper, the modeling approach is described, and the solution is compared to results obtained with a finite element method to evaluate the accuracy of the solution in light of assumptions made in formulating the model. Then the calculated transmission loss is interpreted in terms of a modal decomposition of the field, and the solution from the hybrid model is compared to adiabatic and N × 2D solutions to assess the relative importance of horizontal refraction and mode-coupling effects. An analysis using a horizontal ray trace is presented to explain differences in the modal interference pattern observed between the 3D and N × 2D solutions. The detailed discussion provides a thorough explanation of the observed 3D propagation effects and demonstrates the usefulness of the approximate normal mode/parabolic equation hybrid model as a tool to understand measured transmission loss in complex environments.\",\"PeriodicalId\":54860,\"journal\":{\"name\":\"Journal of Computational Acoustics\",\"volume\":\"23 1\",\"pages\":\"1550005\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1142/S0218396X15500058\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Acoustics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0218396X15500058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Acoustics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0218396X15500058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 10

摘要

三维传播在一个无限长余弦形状的山检查使用近似法向模式/抛物方程混合模型,包括模式耦合在出方向。山的坡度相对较浅,但足以产生模式耦合和水平折射效应。在本文的第一部分中,描述了建模方法,并将解与有限元法得到的结果进行了比较,以根据制定模型时所做的假设来评估解的准确性。然后用场的模态分解来解释计算的透射损耗,并将混合模型的解与绝热解和N × 2D解进行比较,以评估水平折射和模态耦合效应的相对重要性。分析使用水平射线迹被提出,以解释在三维和N × 2D解决方案之间观察到的模态干涉图案的差异。详细的讨论提供了观察到的3D传播效应的全面解释,并证明了近似法向模式/抛物方程混合模型作为理解复杂环境中测量传输损耗的工具的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Normal mode analysis of three-dimensional propagation over a small-slope cosine shaped hill
Three-dimensional propagation over an infinitely long cosine shaped hill is examined using an approximate normal mode/parabolic equation hybrid model that includes mode coupling in the out-going direction. The slope of the hill is relatively shallow, but it is significant enough to produce both mode-coupling and horizontal refraction effects. In the first part of the paper, the modeling approach is described, and the solution is compared to results obtained with a finite element method to evaluate the accuracy of the solution in light of assumptions made in formulating the model. Then the calculated transmission loss is interpreted in terms of a modal decomposition of the field, and the solution from the hybrid model is compared to adiabatic and N × 2D solutions to assess the relative importance of horizontal refraction and mode-coupling effects. An analysis using a horizontal ray trace is presented to explain differences in the modal interference pattern observed between the 3D and N × 2D solutions. The detailed discussion provides a thorough explanation of the observed 3D propagation effects and demonstrates the usefulness of the approximate normal mode/parabolic equation hybrid model as a tool to understand measured transmission loss in complex environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
审稿时长
4.5 months
期刊介绍: Currently known as Journal of Theoretical and Computational Acoustics (JTCA).The aim of this journal is to provide an international forum for the dissemination of the state-of-the-art information in the field of Computational Acoustics. Topics covered by this journal include research and tutorial contributions in OCEAN ACOUSTICS (a subject of active research in relation with sonar detection and the design of noiseless ships), SEISMO-ACOUSTICS (of concern to earthquake science and engineering, and also to those doing underground prospection like searching for petroleum), AEROACOUSTICS (which includes the analysis of noise created by aircraft), COMPUTATIONAL METHODS, and SUPERCOMPUTING. In addition to the traditional issues and problems in computational methods, the journal also considers theoretical research acoustics papers which lead to large-scale scientific computations. The journal strives to be flexible in the type of high quality papers it publishes and their format. Equally desirable are Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational acoustics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research in which other than strictly computational arguments may be important in establishing a basis for further developments. Tutorial review papers, covering some of the important issues in Computational Mathematical Methods, Scientific Computing, and their applications. Short notes, which present specific new results and techniques in a brief communication. The journal will occasionally publish significant contributions which are larger than the usual format for regular papers. Special issues which report results of high quality workshops in related areas and monographs of significant contributions in the Series of Computational Acoustics will also be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信