{"title":"面向智能制造云生存能力的资源配置","authors":"M. Nong, Lingfeng Huang, Mingtao Liu","doi":"10.1145/3533701","DOIUrl":null,"url":null,"abstract":"With the development of virtualization technology, cloud computing has emerged as a powerful and flexible platform for various services such as online trading. However, there are concerns about the survivability of cloud services in smart manufacturing. Most existing solutions provide a standby Virtual Machine (VM) for each running VM. However, this often leads to huge resource waste because VMs do not always run at full capacity. To reduce resource waste, we propose a smart survivability framework to efficiently allocate resources to standby VMs. Our framework contains two novel aspects: (1) a prediction mechanism to predict the resource utilization of each VM in order to reduce the number of standby VMs; and (2) a nested virtualization technology to refine the granularity of standby VMs. We will use an open-source cloud simulation platform named cloudsim, with real-world data, to verify the feasibility of the proposed framework and evaluate its performance. The proposed Smart Survivable Usable Virtual Machine (SSUVM) will predict resource utilization of VMs on Rack1 periodically. When errors happen in VMs, the framework will allocate standby resources according to the predicted result. The SSUVM will receive the latest running status of the failed VM and its mirror image to recover the VM's work.","PeriodicalId":45274,"journal":{"name":"ACM Transactions on Management Information Systems","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2022-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Allocation of Resources for Cloud Survivability in Smart Manufacturing\",\"authors\":\"M. Nong, Lingfeng Huang, Mingtao Liu\",\"doi\":\"10.1145/3533701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of virtualization technology, cloud computing has emerged as a powerful and flexible platform for various services such as online trading. However, there are concerns about the survivability of cloud services in smart manufacturing. Most existing solutions provide a standby Virtual Machine (VM) for each running VM. However, this often leads to huge resource waste because VMs do not always run at full capacity. To reduce resource waste, we propose a smart survivability framework to efficiently allocate resources to standby VMs. Our framework contains two novel aspects: (1) a prediction mechanism to predict the resource utilization of each VM in order to reduce the number of standby VMs; and (2) a nested virtualization technology to refine the granularity of standby VMs. We will use an open-source cloud simulation platform named cloudsim, with real-world data, to verify the feasibility of the proposed framework and evaluate its performance. The proposed Smart Survivable Usable Virtual Machine (SSUVM) will predict resource utilization of VMs on Rack1 periodically. When errors happen in VMs, the framework will allocate standby resources according to the predicted result. The SSUVM will receive the latest running status of the failed VM and its mirror image to recover the VM's work.\",\"PeriodicalId\":45274,\"journal\":{\"name\":\"ACM Transactions on Management Information Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Management Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3533701\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Management Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3533701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Allocation of Resources for Cloud Survivability in Smart Manufacturing
With the development of virtualization technology, cloud computing has emerged as a powerful and flexible platform for various services such as online trading. However, there are concerns about the survivability of cloud services in smart manufacturing. Most existing solutions provide a standby Virtual Machine (VM) for each running VM. However, this often leads to huge resource waste because VMs do not always run at full capacity. To reduce resource waste, we propose a smart survivability framework to efficiently allocate resources to standby VMs. Our framework contains two novel aspects: (1) a prediction mechanism to predict the resource utilization of each VM in order to reduce the number of standby VMs; and (2) a nested virtualization technology to refine the granularity of standby VMs. We will use an open-source cloud simulation platform named cloudsim, with real-world data, to verify the feasibility of the proposed framework and evaluate its performance. The proposed Smart Survivable Usable Virtual Machine (SSUVM) will predict resource utilization of VMs on Rack1 periodically. When errors happen in VMs, the framework will allocate standby resources according to the predicted result. The SSUVM will receive the latest running status of the failed VM and its mirror image to recover the VM's work.