基于捕食者收获Holling II型函数的捕食者-捕食者三物种模型

S. Vijaya, E. Rekha
{"title":"基于捕食者收获Holling II型函数的捕食者-捕食者三物种模型","authors":"S. Vijaya, E. Rekha","doi":"10.1142/S1793048016500016","DOIUrl":null,"url":null,"abstract":"This paper presents three species harvesting model in which there is one predator species and two others are prey species. We derive boundedness and equilibrium point for this system. Also we derive the stability of this system analytically. We find bifurcation for this system. We have derived the binomic equilibrium point by using Pontryagin’s maximum principle (PMP). Presented are various suitable analytical and numerical examples with Maple 18 programming.","PeriodicalId":88835,"journal":{"name":"Biophysical reviews and letters","volume":"11 1","pages":"87-104"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S1793048016500016","citationCount":"5","resultStr":"{\"title\":\"Prey–Predator Three Species Model Using Predator Harvesting Holling Type II Functional\",\"authors\":\"S. Vijaya, E. Rekha\",\"doi\":\"10.1142/S1793048016500016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents three species harvesting model in which there is one predator species and two others are prey species. We derive boundedness and equilibrium point for this system. Also we derive the stability of this system analytically. We find bifurcation for this system. We have derived the binomic equilibrium point by using Pontryagin’s maximum principle (PMP). Presented are various suitable analytical and numerical examples with Maple 18 programming.\",\"PeriodicalId\":88835,\"journal\":{\"name\":\"Biophysical reviews and letters\",\"volume\":\"11 1\",\"pages\":\"87-104\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1142/S1793048016500016\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical reviews and letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S1793048016500016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reviews and letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S1793048016500016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种捕食物种和两种被捕食物种的三种捕食模型。导出了该系统的有界性和平衡点。并对系统的稳定性进行了解析推导。我们找到了这个系统的分岔。利用庞特里亚金极大值原理(PMP)导出了二组平衡点。给出了用Maple 18编程的各种合适的解析和数值算例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prey–Predator Three Species Model Using Predator Harvesting Holling Type II Functional
This paper presents three species harvesting model in which there is one predator species and two others are prey species. We derive boundedness and equilibrium point for this system. Also we derive the stability of this system analytically. We find bifurcation for this system. We have derived the binomic equilibrium point by using Pontryagin’s maximum principle (PMP). Presented are various suitable analytical and numerical examples with Maple 18 programming.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信