{"title":"活细胞内染色体氧化活性的间断性和变化稳定性用于医学诊断","authors":"N. Galich","doi":"10.1142/S1793048015500095","DOIUrl":null,"url":null,"abstract":"We analyze the experimental data on fluorescence of DNA complexes inside neutrophils in flow cytometry with nanometer spatial resolution. Fluorescence visualizes oxidative activity of DNA and unusual statistics for DNA complex of full set of chromosomes. The exponential increasing of high-order central moments for fluctuations of fluorescence intensity characterizes the existence of intermittency in oxidative activity of DNA. Intermittency depends on the scales (on rank) of DNA networks in given cells. In the large-scale networks (with the scales >12% size of the cells), here occurs the switching to the exponential decreasing of high-order central moments for fluctuations intensity, i.e. stable oxidative activity of DNA as it is assumed for small-scale gene networks. Distributions of Holder’s averages and high-order moments for fluctuations intensity depend on the health status and can be used for high sensitive diagnostics of health. Intermittency of large-scale correlations reflects general natural property of DNA activity and immune response on various perturbations. Intermittency reflects the mutual actions of all large-scale correlations in dense fractal networks for DNA activity and synchronization of all excitations and correlations of all chromosomes in the cells.","PeriodicalId":88835,"journal":{"name":"Biophysical reviews and letters","volume":"10 1","pages":"187-199"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S1793048015500095","citationCount":"2","resultStr":"{\"title\":\"Intermittency and Changing Stability of Oxidative Activity of DNA in Chromosomes Inside Living Cells for Medical Diagnostics\",\"authors\":\"N. Galich\",\"doi\":\"10.1142/S1793048015500095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze the experimental data on fluorescence of DNA complexes inside neutrophils in flow cytometry with nanometer spatial resolution. Fluorescence visualizes oxidative activity of DNA and unusual statistics for DNA complex of full set of chromosomes. The exponential increasing of high-order central moments for fluctuations of fluorescence intensity characterizes the existence of intermittency in oxidative activity of DNA. Intermittency depends on the scales (on rank) of DNA networks in given cells. In the large-scale networks (with the scales >12% size of the cells), here occurs the switching to the exponential decreasing of high-order central moments for fluctuations intensity, i.e. stable oxidative activity of DNA as it is assumed for small-scale gene networks. Distributions of Holder’s averages and high-order moments for fluctuations intensity depend on the health status and can be used for high sensitive diagnostics of health. Intermittency of large-scale correlations reflects general natural property of DNA activity and immune response on various perturbations. Intermittency reflects the mutual actions of all large-scale correlations in dense fractal networks for DNA activity and synchronization of all excitations and correlations of all chromosomes in the cells.\",\"PeriodicalId\":88835,\"journal\":{\"name\":\"Biophysical reviews and letters\",\"volume\":\"10 1\",\"pages\":\"187-199\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1142/S1793048015500095\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical reviews and letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S1793048015500095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reviews and letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S1793048015500095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Intermittency and Changing Stability of Oxidative Activity of DNA in Chromosomes Inside Living Cells for Medical Diagnostics
We analyze the experimental data on fluorescence of DNA complexes inside neutrophils in flow cytometry with nanometer spatial resolution. Fluorescence visualizes oxidative activity of DNA and unusual statistics for DNA complex of full set of chromosomes. The exponential increasing of high-order central moments for fluctuations of fluorescence intensity characterizes the existence of intermittency in oxidative activity of DNA. Intermittency depends on the scales (on rank) of DNA networks in given cells. In the large-scale networks (with the scales >12% size of the cells), here occurs the switching to the exponential decreasing of high-order central moments for fluctuations intensity, i.e. stable oxidative activity of DNA as it is assumed for small-scale gene networks. Distributions of Holder’s averages and high-order moments for fluctuations intensity depend on the health status and can be used for high sensitive diagnostics of health. Intermittency of large-scale correlations reflects general natural property of DNA activity and immune response on various perturbations. Intermittency reflects the mutual actions of all large-scale correlations in dense fractal networks for DNA activity and synchronization of all excitations and correlations of all chromosomes in the cells.