直觉模糊偏好关系的因子化

IF 0.7 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
J. Mordeson, T. Clark, Karen E. Albert
{"title":"直觉模糊偏好关系的因子化","authors":"J. Mordeson, T. Clark, Karen E. Albert","doi":"10.1142/S179300571450001X","DOIUrl":null,"url":null,"abstract":"The proofs of many factorization results for an intuitionistic fuzzy binary relation 〈ρμ,ρν〉 involve dual proofs, one for ρμ with respect to a t-conorm ⊕ and one for ρν with respect to a t-norm ⊗. In this paper, we show that one proof can be obtained from the other by considering ⊕ and ⊗ dual under an involutive fuzzy complement. We provide a series of singular proofs for commonly defined norms and conorms.","PeriodicalId":44835,"journal":{"name":"New Mathematics and Natural Computation","volume":"10 1","pages":"1-25"},"PeriodicalIF":0.7000,"publicationDate":"2014-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S179300571450001X","citationCount":"1","resultStr":"{\"title\":\"Factorization of intuitionistic fuzzy preference relations\",\"authors\":\"J. Mordeson, T. Clark, Karen E. Albert\",\"doi\":\"10.1142/S179300571450001X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proofs of many factorization results for an intuitionistic fuzzy binary relation 〈ρμ,ρν〉 involve dual proofs, one for ρμ with respect to a t-conorm ⊕ and one for ρν with respect to a t-norm ⊗. In this paper, we show that one proof can be obtained from the other by considering ⊕ and ⊗ dual under an involutive fuzzy complement. We provide a series of singular proofs for commonly defined norms and conorms.\",\"PeriodicalId\":44835,\"journal\":{\"name\":\"New Mathematics and Natural Computation\",\"volume\":\"10 1\",\"pages\":\"1-25\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2014-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1142/S179300571450001X\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Mathematics and Natural Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S179300571450001X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Mathematics and Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S179300571450001X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

摘要

直观模糊二元关系< ρμ,ρν >的许多分解结果的证明涉及到两个证明,一个是关于ρμ关于t-适形⊕的证明,一个是关于ρν关于t-范数⊗的证明。本文证明了在对合模糊补下,考虑⊕和⊗对偶可以由另一个证明得到。我们提供了一系列关于共定义规范和共定义规范的奇异证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Factorization of intuitionistic fuzzy preference relations
The proofs of many factorization results for an intuitionistic fuzzy binary relation 〈ρμ,ρν〉 involve dual proofs, one for ρμ with respect to a t-conorm ⊕ and one for ρν with respect to a t-norm ⊗. In this paper, we show that one proof can be obtained from the other by considering ⊕ and ⊗ dual under an involutive fuzzy complement. We provide a series of singular proofs for commonly defined norms and conorms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Mathematics and Natural Computation
New Mathematics and Natural Computation MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
1.70
自引率
10.00%
发文量
47
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信