S/ mar载体-基因治疗的替代表达系统?

C. Hagedorn, H. Lipps
{"title":"S/ mar载体-基因治疗的替代表达系统?","authors":"C. Hagedorn, H. Lipps","doi":"10.1142/S156855861230003X","DOIUrl":null,"url":null,"abstract":"Due to the lack of natural occurring plasmids in higher eukaryotes, most vectors currently used for the modification of mammalian cells and organisms are based on modified viruses. But the use of these virus-based vectors still has severe safety risks and therefore considerable efforts are made to design alternative vector systems, whose function are based on chromosomal elements and which behave as an autonomous unit in the cell. The construction of episomal vectors was hindered by our limited knowledge of the epigenetic regulation of replication in higher eukaryotes. However, in the late 1990, a prototype non-viral episomal vector was constructed which replicates autonomously in all mammalian cells and is mitotically stable in the absence of selection. Its function relies on an expression unit linked to a scaffold/matrix-attached region (S/MAR). In this short review, we describe the rational of its construction and functioning. The prototype vector was improved within the past years with respect to establishment and expression efficiency and has now been tested for various preclinical applications. Eventually, S/MAR-based vectors will be improved to such a stage that they can provide a safe alternative to viral vectors to be used in gene therapy.","PeriodicalId":93646,"journal":{"name":"Gene therapy and regulation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S156855861230003X","citationCount":"0","resultStr":"{\"title\":\"S/MAR VECTORS — ALTERNATIVE EXPRESSION SYSTEMS FOR GENE THERAPY?\",\"authors\":\"C. Hagedorn, H. Lipps\",\"doi\":\"10.1142/S156855861230003X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the lack of natural occurring plasmids in higher eukaryotes, most vectors currently used for the modification of mammalian cells and organisms are based on modified viruses. But the use of these virus-based vectors still has severe safety risks and therefore considerable efforts are made to design alternative vector systems, whose function are based on chromosomal elements and which behave as an autonomous unit in the cell. The construction of episomal vectors was hindered by our limited knowledge of the epigenetic regulation of replication in higher eukaryotes. However, in the late 1990, a prototype non-viral episomal vector was constructed which replicates autonomously in all mammalian cells and is mitotically stable in the absence of selection. Its function relies on an expression unit linked to a scaffold/matrix-attached region (S/MAR). In this short review, we describe the rational of its construction and functioning. The prototype vector was improved within the past years with respect to establishment and expression efficiency and has now been tested for various preclinical applications. Eventually, S/MAR-based vectors will be improved to such a stage that they can provide a safe alternative to viral vectors to be used in gene therapy.\",\"PeriodicalId\":93646,\"journal\":{\"name\":\"Gene therapy and regulation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1142/S156855861230003X\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gene therapy and regulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S156855861230003X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene therapy and regulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S156855861230003X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于高等真核生物缺乏天然存在的质粒,目前用于修饰哺乳动物细胞和生物体的大多数载体都是基于修饰的病毒。但是,使用这些基于病毒的载体仍然存在严重的安全风险,因此,人们做出了相当大的努力来设计替代载体系统,其功能基于染色体元素,并在细胞中作为一个自主单元发挥作用。我们对高等真核生物复制的表观遗传调控的有限知识阻碍了表观体载体的构建。然而,在20世纪90年代末,一种原型非病毒外泌体载体被构建,它在所有哺乳动物细胞中自主复制,并且在没有选择的情况下有丝分裂稳定。其功能依赖于连接到支架/基质附着区(S/MAR)的表达单元。在这篇简短的综述中,我们描述了它的结构和功能的合理性。在过去的几年里,原型载体在建立和表达效率方面得到了改进,现在已经在各种临床前应用中进行了测试。最终,基于S/ mar的载体将被改进到这样一个阶段,它们可以提供一种安全的替代病毒载体,用于基因治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
S/MAR VECTORS — ALTERNATIVE EXPRESSION SYSTEMS FOR GENE THERAPY?
Due to the lack of natural occurring plasmids in higher eukaryotes, most vectors currently used for the modification of mammalian cells and organisms are based on modified viruses. But the use of these virus-based vectors still has severe safety risks and therefore considerable efforts are made to design alternative vector systems, whose function are based on chromosomal elements and which behave as an autonomous unit in the cell. The construction of episomal vectors was hindered by our limited knowledge of the epigenetic regulation of replication in higher eukaryotes. However, in the late 1990, a prototype non-viral episomal vector was constructed which replicates autonomously in all mammalian cells and is mitotically stable in the absence of selection. Its function relies on an expression unit linked to a scaffold/matrix-attached region (S/MAR). In this short review, we describe the rational of its construction and functioning. The prototype vector was improved within the past years with respect to establishment and expression efficiency and has now been tested for various preclinical applications. Eventually, S/MAR-based vectors will be improved to such a stage that they can provide a safe alternative to viral vectors to be used in gene therapy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信