边值问题解的存在性

Q4 Engineering
Liu Xiao-bo
{"title":"边值问题解的存在性","authors":"Liu Xiao-bo","doi":"10.1142/9789811213755_0022","DOIUrl":null,"url":null,"abstract":"The existing of solutions for the following boundary value problem of fractional differential equations is studied.{cDαu(t) +λcDα-1u(t) +f(t,u(t) ) =0,0t1,u(0) =0,u(1) =0,where 1α≤2,0≤λ18,cDα is Caputo fractional derivative,and f∶[0,1]×R→R is continuous.Under several types of sufficient conditions,the existence of solutions to the above problem is proved by a fixed-point theorems.","PeriodicalId":39680,"journal":{"name":"Journal of Donghua University (English Edition)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of Solutions for the Boundary Value Problem\",\"authors\":\"Liu Xiao-bo\",\"doi\":\"10.1142/9789811213755_0022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The existing of solutions for the following boundary value problem of fractional differential equations is studied.{cDαu(t) +λcDα-1u(t) +f(t,u(t) ) =0,0t1,u(0) =0,u(1) =0,where 1α≤2,0≤λ18,cDα is Caputo fractional derivative,and f∶[0,1]×R→R is continuous.Under several types of sufficient conditions,the existence of solutions to the above problem is proved by a fixed-point theorems.\",\"PeriodicalId\":39680,\"journal\":{\"name\":\"Journal of Donghua University (English Edition)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Donghua University (English Edition)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.1142/9789811213755_0022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Donghua University (English Edition)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1142/9789811213755_0022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

研究了下列分数阶微分方程边值问题解的存在性:{cDαu(t) +λcDα-1u(t) +f(t,u(t)) =0,0t1,u(0) =0,u(1) =0,其中1α≤2,0≤λ18,cDα为Caputo分数阶导数,f∶[0,1]×R→R连续。在几种充分条件下,用不动点定理证明了上述问题解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of Solutions for the Boundary Value Problem
The existing of solutions for the following boundary value problem of fractional differential equations is studied.{cDαu(t) +λcDα-1u(t) +f(t,u(t) ) =0,0t1,u(0) =0,u(1) =0,where 1α≤2,0≤λ18,cDα is Caputo fractional derivative,and f∶[0,1]×R→R is continuous.Under several types of sufficient conditions,the existence of solutions to the above problem is proved by a fixed-point theorems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Donghua University (English Edition)
Journal of Donghua University (English Edition) Materials Science-Polymers and Plastics
CiteScore
0.30
自引率
0.00%
发文量
3553
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信