改进蛋白质-配体结合位点的同源性模型。

Chris Kauffman, H. Rangwala, G. Karypis
{"title":"改进蛋白质-配体结合位点的同源性模型。","authors":"Chris Kauffman, H. Rangwala, G. Karypis","doi":"10.1142/9781848162648_0019","DOIUrl":null,"url":null,"abstract":"In order to improve the prediction of protein-ligand binding sites through homology modeling, we incorporate knowledge of the binding residues into the modeling framework. Residues are identified as binding or nonbinding based on their true labels as well as labels predicted from structure and sequence. The sequence predictions were made using a support vector machine framework which employs a sophisticated window-based kernel. Binding labels are used with a very sensitive sequence alignment method to align the target and template. Relevant parameters governing the alignment process are searched for optimal values. Based on our results, homology models of the binding site can be improved if a priori knowledge of the binding residues is available. For target-template pairs with low sequence identity and high structural diversity our sequence-based prediction method provided sufficient information to realize this improvement.","PeriodicalId":72665,"journal":{"name":"Computational systems bioinformatics. Computational Systems Bioinformatics Conference","volume":"7 1","pages":"211-22"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Improving homology models for protein-ligand binding sites.\",\"authors\":\"Chris Kauffman, H. Rangwala, G. Karypis\",\"doi\":\"10.1142/9781848162648_0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve the prediction of protein-ligand binding sites through homology modeling, we incorporate knowledge of the binding residues into the modeling framework. Residues are identified as binding or nonbinding based on their true labels as well as labels predicted from structure and sequence. The sequence predictions were made using a support vector machine framework which employs a sophisticated window-based kernel. Binding labels are used with a very sensitive sequence alignment method to align the target and template. Relevant parameters governing the alignment process are searched for optimal values. Based on our results, homology models of the binding site can be improved if a priori knowledge of the binding residues is available. For target-template pairs with low sequence identity and high structural diversity our sequence-based prediction method provided sufficient information to realize this improvement.\",\"PeriodicalId\":72665,\"journal\":{\"name\":\"Computational systems bioinformatics. Computational Systems Bioinformatics Conference\",\"volume\":\"7 1\",\"pages\":\"211-22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational systems bioinformatics. Computational Systems Bioinformatics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9781848162648_0019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational systems bioinformatics. Computational Systems Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9781848162648_0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

为了通过同源性建模提高对蛋白质-配体结合位点的预测,我们将结合残基的知识纳入建模框架。根据残基的真实标签以及从结构和序列预测的标签来识别它们是结合的还是非结合的。使用支持向量机框架进行序列预测,该框架采用了复杂的基于窗口的内核。结合标签使用非常敏感的序列比对方法来对准目标和模板。寻找控制对准过程的相关参数的最优值。基于我们的研究结果,如果结合残基的先验知识可用,可以改进结合位点的同源性模型。对于低序列同一性和高结构多样性的目标模板对,基于序列的预测方法提供了足够的信息来实现这一改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving homology models for protein-ligand binding sites.
In order to improve the prediction of protein-ligand binding sites through homology modeling, we incorporate knowledge of the binding residues into the modeling framework. Residues are identified as binding or nonbinding based on their true labels as well as labels predicted from structure and sequence. The sequence predictions were made using a support vector machine framework which employs a sophisticated window-based kernel. Binding labels are used with a very sensitive sequence alignment method to align the target and template. Relevant parameters governing the alignment process are searched for optimal values. Based on our results, homology models of the binding site can be improved if a priori knowledge of the binding residues is available. For target-template pairs with low sequence identity and high structural diversity our sequence-based prediction method provided sufficient information to realize this improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信