{"title":"等熵可压缩二维欧拉方程能量守恒解的非唯一性","authors":"C. Klingenberg, Simon Markfelder","doi":"10.1142/S0219891618500224","DOIUrl":null,"url":null,"abstract":"We consider the 2-d isentropic compressible Euler equations. It was shown in [E. Chiodaroli, C. De Lellis and O. Kreml, Global ill-posedness of the isentropic system of gas dynamics, Comm. Pure Appl. Math. 68(7) (2015) 1157–1190] that there exist Riemann initial data as well as Lipschitz initial data for which there exist infinitely many weak solutions that fulfill an energy inequality. In this paper, we will prove that there is Riemann initial data for which there exist infinitely many weak solutions that conserve energy, i.e. they fulfill an energy equality. As in the aforementioned paper, we will also show that there even exist Lipschitz initial data with the same property.","PeriodicalId":50182,"journal":{"name":"Journal of Hyperbolic Differential Equations","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S0219891618500224","citationCount":"5","resultStr":"{\"title\":\"Non-uniqueness of energy-conservative solutions to the isentropic compressible two-dimensional Euler equations\",\"authors\":\"C. Klingenberg, Simon Markfelder\",\"doi\":\"10.1142/S0219891618500224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the 2-d isentropic compressible Euler equations. It was shown in [E. Chiodaroli, C. De Lellis and O. Kreml, Global ill-posedness of the isentropic system of gas dynamics, Comm. Pure Appl. Math. 68(7) (2015) 1157–1190] that there exist Riemann initial data as well as Lipschitz initial data for which there exist infinitely many weak solutions that fulfill an energy inequality. In this paper, we will prove that there is Riemann initial data for which there exist infinitely many weak solutions that conserve energy, i.e. they fulfill an energy equality. As in the aforementioned paper, we will also show that there even exist Lipschitz initial data with the same property.\",\"PeriodicalId\":50182,\"journal\":{\"name\":\"Journal of Hyperbolic Differential Equations\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1142/S0219891618500224\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hyperbolic Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/S0219891618500224\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hyperbolic Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S0219891618500224","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5
摘要
我们考虑二维等熵可压缩欧拉方程。[E.]chodaroli, C. De Lellis和O. Kreml,气体动力学等熵系统的全局病态性,物理学报。数学,68(7)(2015)1157-1190],存在Riemann初始数据和Lipschitz初始数据,存在无限多个弱解满足能量不等式。在本文中,我们将证明存在无穷多个守恒能量的弱解的黎曼初始数据,即它们满足能量相等。与上述论文一样,我们还将证明甚至存在具有相同性质的Lipschitz初始数据。
Non-uniqueness of energy-conservative solutions to the isentropic compressible two-dimensional Euler equations
We consider the 2-d isentropic compressible Euler equations. It was shown in [E. Chiodaroli, C. De Lellis and O. Kreml, Global ill-posedness of the isentropic system of gas dynamics, Comm. Pure Appl. Math. 68(7) (2015) 1157–1190] that there exist Riemann initial data as well as Lipschitz initial data for which there exist infinitely many weak solutions that fulfill an energy inequality. In this paper, we will prove that there is Riemann initial data for which there exist infinitely many weak solutions that conserve energy, i.e. they fulfill an energy equality. As in the aforementioned paper, we will also show that there even exist Lipschitz initial data with the same property.
期刊介绍:
This journal publishes original research papers on nonlinear hyperbolic problems and related topics, of mathematical and/or physical interest. Specifically, it invites papers on the theory and numerical analysis of hyperbolic conservation laws and of hyperbolic partial differential equations arising in mathematical physics. The Journal welcomes contributions in:
Theory of nonlinear hyperbolic systems of conservation laws, addressing the issues of well-posedness and qualitative behavior of solutions, in one or several space dimensions.
Hyperbolic differential equations of mathematical physics, such as the Einstein equations of general relativity, Dirac equations, Maxwell equations, relativistic fluid models, etc.
Lorentzian geometry, particularly global geometric and causal theoretic aspects of spacetimes satisfying the Einstein equations.
Nonlinear hyperbolic systems arising in continuum physics such as: hyperbolic models of fluid dynamics, mixed models of transonic flows, etc.
General problems that are dominated (but not exclusively driven) by finite speed phenomena, such as dissipative and dispersive perturbations of hyperbolic systems, and models from statistical mechanics and other probabilistic models relevant to the derivation of fluid dynamical equations.
Convergence analysis of numerical methods for hyperbolic equations: finite difference schemes, finite volumes schemes, etc.