铁和石铁陨石上的铼和锇分类学

T. Hirata, A. Masuda
{"title":"铁和石铁陨石上的铼和锇分类学","authors":"T. Hirata, A. Masuda","doi":"10.1111/J.1945-5100.1992.TB01078.X","DOIUrl":null,"url":null,"abstract":"Abstract— Re and Os abundances and 187Os/186Os isotopic ratios in 12 iron meteorites of various groups and five stony iron meteorites have been determined by an inductively coupled plasma mass spectrometry (ICP-MS). The series of iron meteorites studied have Re and Os concentrations ranging from 0.004 to 3.3 ppm and 0.03 to 41 ppm, respectively. The 187Re/186Os ratios in these meteorites fall between 3.0 and 6.1 and the 187Os/186Os between 1.0 and 1.2, giving an initial 187Os/186Os isotopic ratio of 0.790 and a Re-Os age of iron meteorites of 4.30 ± 0.28 Ga when employing the decay constant of 1.64 × 10−11 yr−1. The observed Re-Os age for iron meteorites appears somewhat younger than that for chondrites. The resultant younger age might be due either to a very slow cooling of the parental planetesimals or due to a secondary “shock” event. However, for definite conclusions about the Re-Os age, higher precisions of the Re and Os isotopic measurements and of the decay constant of 187Re are required. Furthermore, the clear elucidation of the mechanisms for the fractionation of the Re/Os abundance ratios are related to the understanding of the meaning of the Re-Os age. \n \nThe Re and Os abundances in pallasite stony iron meteorites are extremely low compared with those for most iron meteorites. On the other hand, the Re and Os abundances in mesosiderite stony iron meteorites show values comparable with those observed in most iron meteorites. The difference in Re and Os abundances in pallasite and mesosiderite stony iron meteorites strongly suggests that these stony iron meteorites are different in origin or history of chemical evolution. \n \nRe and Os abundances in the series of iron and stony iron meteorites were found to have a wide variation covering nearly four orders of magnitude, with a very high correlation coefficient (0.996), and a slope very slightly less than unity. The regression line observed here covers various groups of iron meteorites, stony iron meteorites and also chondrites. Masuda and Hirata (1991) suggested the possible direct mixing process of particles of most refractory metallic elements with gaseous clouds of less refractory matrix elements, since the Re and Os were predicted theoretically to be the first elements to condense as a solid phase from the high temperature solar nebula. The aims of this paper are to present a reliable technique for the Re-Os chronology and to study the cosmochemical sequences of the meteoritic metals.","PeriodicalId":81993,"journal":{"name":"Meteoritics","volume":"27 1","pages":"568-575"},"PeriodicalIF":0.0000,"publicationDate":"1992-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/J.1945-5100.1992.TB01078.X","citationCount":"19","resultStr":"{\"title\":\"Rhenium and osmium systematics on iron and stony iron meteorites\",\"authors\":\"T. Hirata, A. Masuda\",\"doi\":\"10.1111/J.1945-5100.1992.TB01078.X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract— Re and Os abundances and 187Os/186Os isotopic ratios in 12 iron meteorites of various groups and five stony iron meteorites have been determined by an inductively coupled plasma mass spectrometry (ICP-MS). The series of iron meteorites studied have Re and Os concentrations ranging from 0.004 to 3.3 ppm and 0.03 to 41 ppm, respectively. The 187Re/186Os ratios in these meteorites fall between 3.0 and 6.1 and the 187Os/186Os between 1.0 and 1.2, giving an initial 187Os/186Os isotopic ratio of 0.790 and a Re-Os age of iron meteorites of 4.30 ± 0.28 Ga when employing the decay constant of 1.64 × 10−11 yr−1. The observed Re-Os age for iron meteorites appears somewhat younger than that for chondrites. The resultant younger age might be due either to a very slow cooling of the parental planetesimals or due to a secondary “shock” event. However, for definite conclusions about the Re-Os age, higher precisions of the Re and Os isotopic measurements and of the decay constant of 187Re are required. Furthermore, the clear elucidation of the mechanisms for the fractionation of the Re/Os abundance ratios are related to the understanding of the meaning of the Re-Os age. \\n \\nThe Re and Os abundances in pallasite stony iron meteorites are extremely low compared with those for most iron meteorites. On the other hand, the Re and Os abundances in mesosiderite stony iron meteorites show values comparable with those observed in most iron meteorites. The difference in Re and Os abundances in pallasite and mesosiderite stony iron meteorites strongly suggests that these stony iron meteorites are different in origin or history of chemical evolution. \\n \\nRe and Os abundances in the series of iron and stony iron meteorites were found to have a wide variation covering nearly four orders of magnitude, with a very high correlation coefficient (0.996), and a slope very slightly less than unity. The regression line observed here covers various groups of iron meteorites, stony iron meteorites and also chondrites. Masuda and Hirata (1991) suggested the possible direct mixing process of particles of most refractory metallic elements with gaseous clouds of less refractory matrix elements, since the Re and Os were predicted theoretically to be the first elements to condense as a solid phase from the high temperature solar nebula. The aims of this paper are to present a reliable technique for the Re-Os chronology and to study the cosmochemical sequences of the meteoritic metals.\",\"PeriodicalId\":81993,\"journal\":{\"name\":\"Meteoritics\",\"volume\":\"27 1\",\"pages\":\"568-575\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/J.1945-5100.1992.TB01078.X\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meteoritics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/J.1945-5100.1992.TB01078.X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteoritics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/J.1945-5100.1992.TB01078.X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

摘要/ Abstract摘要:用电感耦合等离子体质谱(ICP-MS)测定了12个不同类群的铁陨石和5个石铁陨石中Re、Os丰度和187Os/186Os同位素比值。所研究的铁陨石系列的Re和Os浓度分别为0.004至3.3 ppm和0.03至41 ppm。这些陨石的187Re/186Os比值在3.0 ~ 6.1之间,187Os/186Os比值在1.0 ~ 1.2之间,采用衰变常数1.64 × 10−11 yr−1计算,铁陨石的初始187Os/186Os同位素比值为0.790,Re-Os年龄为4.30±0.28 Ga。观测到的铁陨石的Re-Os年龄似乎比球粒陨石要年轻一些。由此产生的较年轻的年龄可能是由于母星子的非常缓慢的冷却,或者是由于二次“冲击”事件。然而,要得到关于Re-Os年龄的明确结论,需要更高精度的Re和Os同位素测量以及187Re的衰变常数。此外,明确Re/Os丰度比分馏的机理与理解Re-Os年龄的意义有关。与大多数铁陨石相比,软质石铁陨石中的Re和Os丰度极低。另一方面,中黄铁矿石铁陨石中的Re和Os丰度与大多数铁陨石中观测到的值相当。软质石铁陨石与中黄铁矿石铁陨石中Re、Os丰度的差异,有力地说明了这两种石铁陨石在成因或化学演化史上的差异。铁和石铁陨石的Re、Os丰度变化范围广,接近4个数量级,相关系数非常高(0.996),斜率略小于1。这里观察到的回归线涵盖了各种铁陨石、石铁陨石和球粒陨石。Masuda和Hirata(1991)提出了一种可能的直接混合过程,即大多数难熔金属元素的粒子与较少难熔基质元素的气体云的混合过程,因为理论上预测Re和Os是高温太阳星云中首先凝结成固相的元素。本文的目的是提出一种可靠的Re-Os年代学技术,并研究陨石金属的宇宙化学序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rhenium and osmium systematics on iron and stony iron meteorites
Abstract— Re and Os abundances and 187Os/186Os isotopic ratios in 12 iron meteorites of various groups and five stony iron meteorites have been determined by an inductively coupled plasma mass spectrometry (ICP-MS). The series of iron meteorites studied have Re and Os concentrations ranging from 0.004 to 3.3 ppm and 0.03 to 41 ppm, respectively. The 187Re/186Os ratios in these meteorites fall between 3.0 and 6.1 and the 187Os/186Os between 1.0 and 1.2, giving an initial 187Os/186Os isotopic ratio of 0.790 and a Re-Os age of iron meteorites of 4.30 ± 0.28 Ga when employing the decay constant of 1.64 × 10−11 yr−1. The observed Re-Os age for iron meteorites appears somewhat younger than that for chondrites. The resultant younger age might be due either to a very slow cooling of the parental planetesimals or due to a secondary “shock” event. However, for definite conclusions about the Re-Os age, higher precisions of the Re and Os isotopic measurements and of the decay constant of 187Re are required. Furthermore, the clear elucidation of the mechanisms for the fractionation of the Re/Os abundance ratios are related to the understanding of the meaning of the Re-Os age. The Re and Os abundances in pallasite stony iron meteorites are extremely low compared with those for most iron meteorites. On the other hand, the Re and Os abundances in mesosiderite stony iron meteorites show values comparable with those observed in most iron meteorites. The difference in Re and Os abundances in pallasite and mesosiderite stony iron meteorites strongly suggests that these stony iron meteorites are different in origin or history of chemical evolution. Re and Os abundances in the series of iron and stony iron meteorites were found to have a wide variation covering nearly four orders of magnitude, with a very high correlation coefficient (0.996), and a slope very slightly less than unity. The regression line observed here covers various groups of iron meteorites, stony iron meteorites and also chondrites. Masuda and Hirata (1991) suggested the possible direct mixing process of particles of most refractory metallic elements with gaseous clouds of less refractory matrix elements, since the Re and Os were predicted theoretically to be the first elements to condense as a solid phase from the high temperature solar nebula. The aims of this paper are to present a reliable technique for the Re-Os chronology and to study the cosmochemical sequences of the meteoritic metals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信