基于多模态关联反馈的基于内容的社会图像搜索结果重新排序

Q4 Computer Science
Jiyi Li, Qiang Ma, Yasuhito Asano, Masatoshi Yoshikawa
{"title":"基于多模态关联反馈的基于内容的社会图像搜索结果重新排序","authors":"Jiyi Li, Qiang Ma, Yasuhito Asano, Masatoshi Yoshikawa","doi":"10.11185/IMT.7.1130","DOIUrl":null,"url":null,"abstract":"Social image hosting websites, such as Flickr, have a rapid growth recently. Content based image retrieval on such websites is an useful potential service but is still unavailable because its performance is unsatisfactory. We propose a multi modal relevance feedback (MMRF) scheme and a supervised re-ranking approach based on it to improve the performance for practical application. Our multi modal scheme utilizes both image and social tag relevance feedback instances. The approach propagates visual and textual information as well as multi modal relevance feedback information on the graph with a mutual reinforcement process. We conduct experiments based on real world data from Flickr to evaluate the performance of our approach. We also conduct an experiment to show that our multi modal relevance feedback scheme significantly improves performance compared with traditional single modal relevance feedback (SMRF) scheme.","PeriodicalId":16243,"journal":{"name":"Journal of Information Processing","volume":"7 1","pages":"1130-1135"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Re-ranking Content Based Social Image Search Results by Multi Modal Relevance Feedback\",\"authors\":\"Jiyi Li, Qiang Ma, Yasuhito Asano, Masatoshi Yoshikawa\",\"doi\":\"10.11185/IMT.7.1130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social image hosting websites, such as Flickr, have a rapid growth recently. Content based image retrieval on such websites is an useful potential service but is still unavailable because its performance is unsatisfactory. We propose a multi modal relevance feedback (MMRF) scheme and a supervised re-ranking approach based on it to improve the performance for practical application. Our multi modal scheme utilizes both image and social tag relevance feedback instances. The approach propagates visual and textual information as well as multi modal relevance feedback information on the graph with a mutual reinforcement process. We conduct experiments based on real world data from Flickr to evaluate the performance of our approach. We also conduct an experiment to show that our multi modal relevance feedback scheme significantly improves performance compared with traditional single modal relevance feedback (SMRF) scheme.\",\"PeriodicalId\":16243,\"journal\":{\"name\":\"Journal of Information Processing\",\"volume\":\"7 1\",\"pages\":\"1130-1135\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11185/IMT.7.1130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11185/IMT.7.1130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

社交图片托管网站,如Flickr,最近发展迅速。基于内容的图像检索在这些网站上是一种有用的潜在服务,但由于其性能不令人满意,仍然不可用。为了提高实际应用的性能,我们提出了一种多模态相关反馈(MMRF)方案和基于该方案的监督重排序方法。我们的多模式方案利用图像和社会标签相关反馈实例。该方法通过相互强化的过程在图上传播视觉信息和文本信息以及多模态相关反馈信息。我们根据来自Flickr的真实数据进行实验,以评估我们的方法的性能。实验表明,与传统的单模态相关反馈(SMRF)方案相比,我们的多模态相关反馈方案显著提高了性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Re-ranking Content Based Social Image Search Results by Multi Modal Relevance Feedback
Social image hosting websites, such as Flickr, have a rapid growth recently. Content based image retrieval on such websites is an useful potential service but is still unavailable because its performance is unsatisfactory. We propose a multi modal relevance feedback (MMRF) scheme and a supervised re-ranking approach based on it to improve the performance for practical application. Our multi modal scheme utilizes both image and social tag relevance feedback instances. The approach propagates visual and textual information as well as multi modal relevance feedback information on the graph with a mutual reinforcement process. We conduct experiments based on real world data from Flickr to evaluate the performance of our approach. We also conduct an experiment to show that our multi modal relevance feedback scheme significantly improves performance compared with traditional single modal relevance feedback (SMRF) scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Information Processing
Journal of Information Processing Computer Science-Computer Science (all)
CiteScore
1.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信