{"title":"等离子体系统中晶格-等离子体效应对纠缠行为的影响","authors":"A. Salmanogli","doi":"10.1117/1.JNP.16.046006","DOIUrl":null,"url":null,"abstract":"Abstract. In this study, we designed a plasmonic system containing an array of nanoparticles (NPs) coupled to a quantum dot (QD) to generate entangled photons. The interaction of incoming light with the array of NPs generates a modified plasmon resonance, so-called lattice-plasmon (interaction of the NPs near-field with the photonic mode). Due to its unique optical properties, the lattice-plasmon strongly manipulates the output modes’ entanglement behavior. This is mainly because of the influence of the lattice-plasmon on the transition and dephasing rates of the quantum dot. It is shown that it can be possible to manipulate the QD decay rates via the optical properties of the lattice-plasmon. Also, to manage the output modes entanglement, the emphasis is put on the retarded field effect, which dramatically impacts the lattice-plasmon optical properties. It is theoretically found that engineering the optical properties of the lattice-plasmon facilitates the manipulation of the entanglement behavior.","PeriodicalId":16449,"journal":{"name":"Journal of Nanophotonics","volume":"126 1","pages":"046006 - 046006"},"PeriodicalIF":1.1000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lattice-plasmon effect on entanglement behavior in a plasmonic system\",\"authors\":\"A. Salmanogli\",\"doi\":\"10.1117/1.JNP.16.046006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. In this study, we designed a plasmonic system containing an array of nanoparticles (NPs) coupled to a quantum dot (QD) to generate entangled photons. The interaction of incoming light with the array of NPs generates a modified plasmon resonance, so-called lattice-plasmon (interaction of the NPs near-field with the photonic mode). Due to its unique optical properties, the lattice-plasmon strongly manipulates the output modes’ entanglement behavior. This is mainly because of the influence of the lattice-plasmon on the transition and dephasing rates of the quantum dot. It is shown that it can be possible to manipulate the QD decay rates via the optical properties of the lattice-plasmon. Also, to manage the output modes entanglement, the emphasis is put on the retarded field effect, which dramatically impacts the lattice-plasmon optical properties. It is theoretically found that engineering the optical properties of the lattice-plasmon facilitates the manipulation of the entanglement behavior.\",\"PeriodicalId\":16449,\"journal\":{\"name\":\"Journal of Nanophotonics\",\"volume\":\"126 1\",\"pages\":\"046006 - 046006\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JNP.16.046006\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.JNP.16.046006","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Lattice-plasmon effect on entanglement behavior in a plasmonic system
Abstract. In this study, we designed a plasmonic system containing an array of nanoparticles (NPs) coupled to a quantum dot (QD) to generate entangled photons. The interaction of incoming light with the array of NPs generates a modified plasmon resonance, so-called lattice-plasmon (interaction of the NPs near-field with the photonic mode). Due to its unique optical properties, the lattice-plasmon strongly manipulates the output modes’ entanglement behavior. This is mainly because of the influence of the lattice-plasmon on the transition and dephasing rates of the quantum dot. It is shown that it can be possible to manipulate the QD decay rates via the optical properties of the lattice-plasmon. Also, to manage the output modes entanglement, the emphasis is put on the retarded field effect, which dramatically impacts the lattice-plasmon optical properties. It is theoretically found that engineering the optical properties of the lattice-plasmon facilitates the manipulation of the entanglement behavior.
期刊介绍:
The Journal of Nanophotonics publishes peer-reviewed papers focusing on the fabrication and application of nanostructures that facilitate the generation, propagation, manipulation, and detection of light from the infrared to the ultraviolet regimes.