{"title":"用柱状薄膜实现偏振通用带隙","authors":"Ricardo A. Fiallo, A. Lakhtakia, M. Horn","doi":"10.1117/1.JNP.16.046004","DOIUrl":null,"url":null,"abstract":"Abstract. Equichiral sculptured thin films (ECSTFs) with unit cells comprising a sequence of four identical columnar thin films were fabricated using asymmetric serial bideposition to exhibit the polarization-universal Bragg phenomenon. Oblique-angle optical transmission measurements of the ECSTFs showed bands of total transmittance values under 20%, regardless of the polarization state of the incident plane wave. These polarization-universal bandgaps can be tuned by adjusting the angle of incidence.","PeriodicalId":16449,"journal":{"name":"Journal of Nanophotonics","volume":"16 1","pages":"046004 - 046004"},"PeriodicalIF":1.1000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polarization-universal bandgaps realized with columnar thin films\",\"authors\":\"Ricardo A. Fiallo, A. Lakhtakia, M. Horn\",\"doi\":\"10.1117/1.JNP.16.046004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Equichiral sculptured thin films (ECSTFs) with unit cells comprising a sequence of four identical columnar thin films were fabricated using asymmetric serial bideposition to exhibit the polarization-universal Bragg phenomenon. Oblique-angle optical transmission measurements of the ECSTFs showed bands of total transmittance values under 20%, regardless of the polarization state of the incident plane wave. These polarization-universal bandgaps can be tuned by adjusting the angle of incidence.\",\"PeriodicalId\":16449,\"journal\":{\"name\":\"Journal of Nanophotonics\",\"volume\":\"16 1\",\"pages\":\"046004 - 046004\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JNP.16.046004\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.JNP.16.046004","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Polarization-universal bandgaps realized with columnar thin films
Abstract. Equichiral sculptured thin films (ECSTFs) with unit cells comprising a sequence of four identical columnar thin films were fabricated using asymmetric serial bideposition to exhibit the polarization-universal Bragg phenomenon. Oblique-angle optical transmission measurements of the ECSTFs showed bands of total transmittance values under 20%, regardless of the polarization state of the incident plane wave. These polarization-universal bandgaps can be tuned by adjusting the angle of incidence.
期刊介绍:
The Journal of Nanophotonics publishes peer-reviewed papers focusing on the fabrication and application of nanostructures that facilitate the generation, propagation, manipulation, and detection of light from the infrared to the ultraviolet regimes.