{"title":"超过倾斜:不对称波在反应-扩散-对流系统中的传播。","authors":"E. Flach, J. Norbury, S. Schnell","doi":"10.11145/J.BIOMATH.2013.03.027","DOIUrl":null,"url":null,"abstract":"Convection-induced instability in reaction-diffusion systems produces complicated patterns of oscillations behind propagating wavefronts. We transform the system twice: into lambda-omega form, then into polar variables. We find analytical estimates for the wavefront speed which we confirm numerically. Our previous work examined a simpler system [E. H. Flach, S. Schnell, and J. Norbury, Phys. Rev. E 76, 036216 (2007)]; the onset of instability is qualitatively different in numerical solutions of this system. We modify our estimates and connect the two different behaviours. Our estimate explains how the Turing instability fits with pattern found in reaction-diffusion-convection systems. Our results can have important applications to the pattern formation analysis of biological systems.","PeriodicalId":52247,"journal":{"name":"Biomath","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"More than Skew: Asymmetric Wave Propagation in a Reaction-Diffusion-Convection System.\",\"authors\":\"E. Flach, J. Norbury, S. Schnell\",\"doi\":\"10.11145/J.BIOMATH.2013.03.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convection-induced instability in reaction-diffusion systems produces complicated patterns of oscillations behind propagating wavefronts. We transform the system twice: into lambda-omega form, then into polar variables. We find analytical estimates for the wavefront speed which we confirm numerically. Our previous work examined a simpler system [E. H. Flach, S. Schnell, and J. Norbury, Phys. Rev. E 76, 036216 (2007)]; the onset of instability is qualitatively different in numerical solutions of this system. We modify our estimates and connect the two different behaviours. Our estimate explains how the Turing instability fits with pattern found in reaction-diffusion-convection systems. Our results can have important applications to the pattern formation analysis of biological systems.\",\"PeriodicalId\":52247,\"journal\":{\"name\":\"Biomath\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomath\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11145/J.BIOMATH.2013.03.027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomath","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11145/J.BIOMATH.2013.03.027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 1
摘要
在反应扩散系统中,对流诱导的不稳定性在传播波前后产生复杂的振荡模式。我们把这个系统变换两次:首先是形式,然后是极坐标变量。我们找到了波前速度的分析估计,并进行了数值验证。我们之前的工作研究了一个更简单的系统[E]。H. Flach, S. Schnell和J. Norbury, Phys。[j];在该系统的数值解中,不稳定性的开始在性质上是不同的。我们修改我们的估计并将两种不同的行为联系起来。我们的估计解释了图灵不稳定性如何与反应-扩散-对流系统中的模式相匹配。我们的研究结果对生物系统的模式形成分析具有重要的应用价值。
More than Skew: Asymmetric Wave Propagation in a Reaction-Diffusion-Convection System.
Convection-induced instability in reaction-diffusion systems produces complicated patterns of oscillations behind propagating wavefronts. We transform the system twice: into lambda-omega form, then into polar variables. We find analytical estimates for the wavefront speed which we confirm numerically. Our previous work examined a simpler system [E. H. Flach, S. Schnell, and J. Norbury, Phys. Rev. E 76, 036216 (2007)]; the onset of instability is qualitatively different in numerical solutions of this system. We modify our estimates and connect the two different behaviours. Our estimate explains how the Turing instability fits with pattern found in reaction-diffusion-convection systems. Our results can have important applications to the pattern formation analysis of biological systems.