超过倾斜:不对称波在反应-扩散-对流系统中的传播。

Q2 Agricultural and Biological Sciences
E. Flach, J. Norbury, S. Schnell
{"title":"超过倾斜:不对称波在反应-扩散-对流系统中的传播。","authors":"E. Flach, J. Norbury, S. Schnell","doi":"10.11145/J.BIOMATH.2013.03.027","DOIUrl":null,"url":null,"abstract":"Convection-induced instability in reaction-diffusion systems produces complicated patterns of oscillations behind propagating wavefronts. We transform the system twice: into lambda-omega form, then into polar variables. We find analytical estimates for the wavefront speed which we confirm numerically. Our previous work examined a simpler system [E. H. Flach, S. Schnell, and J. Norbury, Phys. Rev. E 76, 036216 (2007)]; the onset of instability is qualitatively different in numerical solutions of this system. We modify our estimates and connect the two different behaviours. Our estimate explains how the Turing instability fits with pattern found in reaction-diffusion-convection systems. Our results can have important applications to the pattern formation analysis of biological systems.","PeriodicalId":52247,"journal":{"name":"Biomath","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"More than Skew: Asymmetric Wave Propagation in a Reaction-Diffusion-Convection System.\",\"authors\":\"E. Flach, J. Norbury, S. Schnell\",\"doi\":\"10.11145/J.BIOMATH.2013.03.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convection-induced instability in reaction-diffusion systems produces complicated patterns of oscillations behind propagating wavefronts. We transform the system twice: into lambda-omega form, then into polar variables. We find analytical estimates for the wavefront speed which we confirm numerically. Our previous work examined a simpler system [E. H. Flach, S. Schnell, and J. Norbury, Phys. Rev. E 76, 036216 (2007)]; the onset of instability is qualitatively different in numerical solutions of this system. We modify our estimates and connect the two different behaviours. Our estimate explains how the Turing instability fits with pattern found in reaction-diffusion-convection systems. Our results can have important applications to the pattern formation analysis of biological systems.\",\"PeriodicalId\":52247,\"journal\":{\"name\":\"Biomath\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomath\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11145/J.BIOMATH.2013.03.027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomath","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11145/J.BIOMATH.2013.03.027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 1

摘要

在反应扩散系统中,对流诱导的不稳定性在传播波前后产生复杂的振荡模式。我们把这个系统变换两次:首先是形式,然后是极坐标变量。我们找到了波前速度的分析估计,并进行了数值验证。我们之前的工作研究了一个更简单的系统[E]。H. Flach, S. Schnell和J. Norbury, Phys。[j];在该系统的数值解中,不稳定性的开始在性质上是不同的。我们修改我们的估计并将两种不同的行为联系起来。我们的估计解释了图灵不稳定性如何与反应-扩散-对流系统中的模式相匹配。我们的研究结果对生物系统的模式形成分析具有重要的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
More than Skew: Asymmetric Wave Propagation in a Reaction-Diffusion-Convection System.
Convection-induced instability in reaction-diffusion systems produces complicated patterns of oscillations behind propagating wavefronts. We transform the system twice: into lambda-omega form, then into polar variables. We find analytical estimates for the wavefront speed which we confirm numerically. Our previous work examined a simpler system [E. H. Flach, S. Schnell, and J. Norbury, Phys. Rev. E 76, 036216 (2007)]; the onset of instability is qualitatively different in numerical solutions of this system. We modify our estimates and connect the two different behaviours. Our estimate explains how the Turing instability fits with pattern found in reaction-diffusion-convection systems. Our results can have important applications to the pattern formation analysis of biological systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomath
Biomath Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
2.20
自引率
0.00%
发文量
6
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信