图上随机游走局部时间的连续性模,用阻力度量表示

IF 1.1 Q1 MATHEMATICS
D. Croydon
{"title":"图上随机游走局部时间的连续性模,用阻力度量表示","authors":"D. Croydon","doi":"10.1112/tlms/tlv003","DOIUrl":null,"url":null,"abstract":"In this article, universal concentration estimates are established for the local times of random walks on weighted graphs in terms of the resistance metric. As a particular application of these, a modulus of continuity for local times is provided in the case when the graphs in question satisfy a certain volume growth condition with respect to the resistance metric. Moreover, it is explained how these results can be applied to self‐similar fractals, for which they are shown to be useful for deriving scaling limits for local times and asymptotic bounds for the cover time distribution.","PeriodicalId":41208,"journal":{"name":"Transactions of the London Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2014-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1112/tlms/tlv003","citationCount":"9","resultStr":"{\"title\":\"Moduli of continuity of local times of random walks on graphs in terms of the resistance metric\",\"authors\":\"D. Croydon\",\"doi\":\"10.1112/tlms/tlv003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, universal concentration estimates are established for the local times of random walks on weighted graphs in terms of the resistance metric. As a particular application of these, a modulus of continuity for local times is provided in the case when the graphs in question satisfy a certain volume growth condition with respect to the resistance metric. Moreover, it is explained how these results can be applied to self‐similar fractals, for which they are shown to be useful for deriving scaling limits for local times and asymptotic bounds for the cover time distribution.\",\"PeriodicalId\":41208,\"journal\":{\"name\":\"Transactions of the London Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2014-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1112/tlms/tlv003\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the London Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1112/tlms/tlv003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the London Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/tlms/tlv003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

摘要

在本文中,根据阻力度量,建立了加权图上随机行走局部时间的普遍集中估计。作为这些的一个特殊应用,当所讨论的图形相对于阻力度量满足一定的体积增长条件时,提供了局部时间的连续性模。此外,还解释了如何将这些结果应用于自相似分形,从而证明了它们对于推导局部时间的标度极限和覆盖时间分布的渐近界是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moduli of continuity of local times of random walks on graphs in terms of the resistance metric
In this article, universal concentration estimates are established for the local times of random walks on weighted graphs in terms of the resistance metric. As a particular application of these, a modulus of continuity for local times is provided in the case when the graphs in question satisfy a certain volume growth condition with respect to the resistance metric. Moreover, it is explained how these results can be applied to self‐similar fractals, for which they are shown to be useful for deriving scaling limits for local times and asymptotic bounds for the cover time distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
8
审稿时长
41 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信