{"title":"关于量子化对称空间的Dolbeault-Dirac算子","authors":"U. Kraehmer, Matthew Tucker-Simmons","doi":"10.1112/tlms/tlv002","DOIUrl":null,"url":null,"abstract":"The Dolbeault complex of a quantized compact Hermitian symmetric space is expressed in terms of the Koszul complex of a braided symmetric algebra of Berenstein and Zwicknagl. This defines a spectral triple quan‐tizing the Dolbeault–Dirac operator associated to the canonical spin c structure.","PeriodicalId":41208,"journal":{"name":"Transactions of the London Mathematical Society","volume":"2 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2013-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1112/tlms/tlv002","citationCount":"25","resultStr":"{\"title\":\"On the Dolbeault–Dirac operator of quantized symmetric spaces\",\"authors\":\"U. Kraehmer, Matthew Tucker-Simmons\",\"doi\":\"10.1112/tlms/tlv002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Dolbeault complex of a quantized compact Hermitian symmetric space is expressed in terms of the Koszul complex of a braided symmetric algebra of Berenstein and Zwicknagl. This defines a spectral triple quan‐tizing the Dolbeault–Dirac operator associated to the canonical spin c structure.\",\"PeriodicalId\":41208,\"journal\":{\"name\":\"Transactions of the London Mathematical Society\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2013-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1112/tlms/tlv002\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the London Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1112/tlms/tlv002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the London Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/tlms/tlv002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the Dolbeault–Dirac operator of quantized symmetric spaces
The Dolbeault complex of a quantized compact Hermitian symmetric space is expressed in terms of the Koszul complex of a braided symmetric algebra of Berenstein and Zwicknagl. This defines a spectral triple quan‐tizing the Dolbeault–Dirac operator associated to the canonical spin c structure.