随机图的团复合体的基本群

IF 1.1 Q1 MATHEMATICS
A. Costa, M. Farber, Danijela Horak
{"title":"随机图的团复合体的基本群","authors":"A. Costa, M. Farber, Danijela Horak","doi":"10.1112/tlms/tlv001","DOIUrl":null,"url":null,"abstract":"We study fundamental groups of clique complexes associated to random Erdős–Rényi graphs Γ . We establish thresholds for a number of properties of fundamental groups of these complexes XΓ . In particular, if p=nα , then we show that gdim(π1(XΓ))=cd(π1(XΓ))=1ifα<−12,gdim(π1(XΓ))=cd(π1(XΓ))=2if−12−13 . We prove that for −1130","PeriodicalId":41208,"journal":{"name":"Transactions of the London Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2013-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1112/tlms/tlv001","citationCount":"29","resultStr":"{\"title\":\"Fundamental groups of clique complexes of random graphs\",\"authors\":\"A. Costa, M. Farber, Danijela Horak\",\"doi\":\"10.1112/tlms/tlv001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study fundamental groups of clique complexes associated to random Erdős–Rényi graphs Γ . We establish thresholds for a number of properties of fundamental groups of these complexes XΓ . In particular, if p=nα , then we show that gdim(π1(XΓ))=cd(π1(XΓ))=1ifα<−12,gdim(π1(XΓ))=cd(π1(XΓ))=2if−12−13 . We prove that for −1130\",\"PeriodicalId\":41208,\"journal\":{\"name\":\"Transactions of the London Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2013-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1112/tlms/tlv001\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the London Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1112/tlms/tlv001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the London Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/tlms/tlv001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 29

摘要

我们研究与随机Erdős-Rényi图Γ相关的团复合体的基本群。我们建立了这些配合物的基本群的一些性质的阈值XΓ。特别是,如果p = nα,我们表明,gdim(π1 (XΓ))= cd(π1 (XΓ))= 1如果α< gdim−12日(π1 (XΓ))= cd(π1 (XΓ))= 2如果12−−13。我们证明了−1130
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fundamental groups of clique complexes of random graphs
We study fundamental groups of clique complexes associated to random Erdős–Rényi graphs Γ . We establish thresholds for a number of properties of fundamental groups of these complexes XΓ . In particular, if p=nα , then we show that gdim(π1(XΓ))=cd(π1(XΓ))=1ifα<−12,gdim(π1(XΓ))=cd(π1(XΓ))=2if−12−13 . We prove that for −1130
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
8
审稿时长
41 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信