{"title":"随机图的团复合体的基本群","authors":"A. Costa, M. Farber, Danijela Horak","doi":"10.1112/tlms/tlv001","DOIUrl":null,"url":null,"abstract":"We study fundamental groups of clique complexes associated to random Erdős–Rényi graphs Γ . We establish thresholds for a number of properties of fundamental groups of these complexes XΓ . In particular, if p=nα , then we show that gdim(π1(XΓ))=cd(π1(XΓ))=1ifα<−12,gdim(π1(XΓ))=cd(π1(XΓ))=2if−12−13 . We prove that for −1130","PeriodicalId":41208,"journal":{"name":"Transactions of the London Mathematical Society","volume":"2 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2013-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1112/tlms/tlv001","citationCount":"29","resultStr":"{\"title\":\"Fundamental groups of clique complexes of random graphs\",\"authors\":\"A. Costa, M. Farber, Danijela Horak\",\"doi\":\"10.1112/tlms/tlv001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study fundamental groups of clique complexes associated to random Erdős–Rényi graphs Γ . We establish thresholds for a number of properties of fundamental groups of these complexes XΓ . In particular, if p=nα , then we show that gdim(π1(XΓ))=cd(π1(XΓ))=1ifα<−12,gdim(π1(XΓ))=cd(π1(XΓ))=2if−12−13 . We prove that for −1130\",\"PeriodicalId\":41208,\"journal\":{\"name\":\"Transactions of the London Mathematical Society\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2013-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1112/tlms/tlv001\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the London Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1112/tlms/tlv001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the London Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/tlms/tlv001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Fundamental groups of clique complexes of random graphs
We study fundamental groups of clique complexes associated to random Erdős–Rényi graphs Γ . We establish thresholds for a number of properties of fundamental groups of these complexes XΓ . In particular, if p=nα , then we show that gdim(π1(XΓ))=cd(π1(XΓ))=1ifα<−12,gdim(π1(XΓ))=cd(π1(XΓ))=2if−12−13 . We prove that for −1130