关于代数解结数

IF 1.1 Q1 MATHEMATICS
Maciej Borodzik, Stefan Friedl
{"title":"关于代数解结数","authors":"Maciej Borodzik, Stefan Friedl","doi":"10.1112/tlms/tlu004","DOIUrl":null,"url":null,"abstract":"The algebraic unknotting number ua(K) of a knot K was introduced by Hitoshi Murakami. It equals the minimal number of crossing changes needed to turn K into an Alexander polynomial one knot. In a previous paper, the authors used the Blanchfield form of a knot K to define an invariant n(K) and proved that n(K)⩽ua(K) . They also showed that n(K) subsumes all previous classical lower bounds on the (algebraic) unknotting number. In this paper, we prove that n(K)=ua(K) .","PeriodicalId":41208,"journal":{"name":"Transactions of the London Mathematical Society","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2013-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1112/tlms/tlu004","citationCount":"12","resultStr":"{\"title\":\"On the algebraic unknotting number\",\"authors\":\"Maciej Borodzik, Stefan Friedl\",\"doi\":\"10.1112/tlms/tlu004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The algebraic unknotting number ua(K) of a knot K was introduced by Hitoshi Murakami. It equals the minimal number of crossing changes needed to turn K into an Alexander polynomial one knot. In a previous paper, the authors used the Blanchfield form of a knot K to define an invariant n(K) and proved that n(K)⩽ua(K) . They also showed that n(K) subsumes all previous classical lower bounds on the (algebraic) unknotting number. In this paper, we prove that n(K)=ua(K) .\",\"PeriodicalId\":41208,\"journal\":{\"name\":\"Transactions of the London Mathematical Society\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2013-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1112/tlms/tlu004\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the London Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1112/tlms/tlu004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the London Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/tlms/tlu004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 12

摘要

结点K的代数解结数ua(K)是由村上仁提出的。它等于把K变成亚历山大多项式一节所需的最小交叉变化数。在之前的文章中,作者利用结点K的Blanchfield形式定义了一个不变量n(K),并证明了n(K)≥ua(K)。他们还证明了n(K)包含了(代数)解结数的所有以前的经典下界。本文证明了n(K)=ua(K)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the algebraic unknotting number
The algebraic unknotting number ua(K) of a knot K was introduced by Hitoshi Murakami. It equals the minimal number of crossing changes needed to turn K into an Alexander polynomial one knot. In a previous paper, the authors used the Blanchfield form of a knot K to define an invariant n(K) and proved that n(K)⩽ua(K) . They also showed that n(K) subsumes all previous classical lower bounds on the (algebraic) unknotting number. In this paper, we prove that n(K)=ua(K) .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
8
审稿时长
41 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信