{"title":"缓慢而有规律的变化","authors":"N. Bingham, A. Ostaszewski","doi":"10.1112/tlms/tlu002","DOIUrl":null,"url":null,"abstract":"We give a new theory of Beurling regular variation (Part II). This includes the previously known theory of Beurling slow variation (Part I) to which we contribute by extending Bloom's theorem. Beurling slow variation arose in the classical theory of Karamata slow and regular variation. We show that the Beurling theory includes the Karamata theory.","PeriodicalId":41208,"journal":{"name":"Transactions of the London Mathematical Society","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1112/tlms/tlu002","citationCount":"29","resultStr":"{\"title\":\"Beurling slow and regular variation\",\"authors\":\"N. Bingham, A. Ostaszewski\",\"doi\":\"10.1112/tlms/tlu002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a new theory of Beurling regular variation (Part II). This includes the previously known theory of Beurling slow variation (Part I) to which we contribute by extending Bloom's theorem. Beurling slow variation arose in the classical theory of Karamata slow and regular variation. We show that the Beurling theory includes the Karamata theory.\",\"PeriodicalId\":41208,\"journal\":{\"name\":\"Transactions of the London Mathematical Society\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1112/tlms/tlu002\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the London Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1112/tlms/tlu002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the London Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/tlms/tlu002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
We give a new theory of Beurling regular variation (Part II). This includes the previously known theory of Beurling slow variation (Part I) to which we contribute by extending Bloom's theorem. Beurling slow variation arose in the classical theory of Karamata slow and regular variation. We show that the Beurling theory includes the Karamata theory.