一个弱*拓扑二分类及其在算子理论中的应用

IF 1.1 Q1 MATHEMATICS
Tomasz Kania, P. Koszmider, N. Laustsen
{"title":"一个弱*拓扑二分类及其在算子理论中的应用","authors":"Tomasz Kania, P. Koszmider, N. Laustsen","doi":"10.1112/tlms/tlu001","DOIUrl":null,"url":null,"abstract":"Denote by [0,ω1) the locally compact Hausdorff space consisting of all countable ordinals, equipped with the order topology, and let C0[0,ω1) be the Banach space of scalar‐valued, continuous functions which are defined on [0,ω1) and vanish eventually. We show that a weak * ‐compact subset of the dual space of C0[0,ω1) is either uniformly Eberlein compact, or it contains a homeomorphic copy of a particular form of the ordinal interval [0,ω1] .","PeriodicalId":41208,"journal":{"name":"Transactions of the London Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2013-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1112/tlms/tlu001","citationCount":"9","resultStr":"{\"title\":\"A weak∗‐topological dichotomy with applications in operator theory\",\"authors\":\"Tomasz Kania, P. Koszmider, N. Laustsen\",\"doi\":\"10.1112/tlms/tlu001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Denote by [0,ω1) the locally compact Hausdorff space consisting of all countable ordinals, equipped with the order topology, and let C0[0,ω1) be the Banach space of scalar‐valued, continuous functions which are defined on [0,ω1) and vanish eventually. We show that a weak * ‐compact subset of the dual space of C0[0,ω1) is either uniformly Eberlein compact, or it contains a homeomorphic copy of a particular form of the ordinal interval [0,ω1] .\",\"PeriodicalId\":41208,\"journal\":{\"name\":\"Transactions of the London Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2013-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1112/tlms/tlu001\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the London Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1112/tlms/tlu001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the London Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/tlms/tlu001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

摘要

用[0,ω1)表示具有有序拓扑的由所有可数序数组成的局部紧化Hausdorff空间,令C0[0,ω1)为在[0,ω1)上定义并最终消失的标量值连续函数的Banach空间。我们证明了C0[0,ω1]对偶空间的弱*‐紧子集是一致Eberlein紧的,或者它包含一个特定形式的有序区间[0,ω1]的同胚副本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A weak∗‐topological dichotomy with applications in operator theory
Denote by [0,ω1) the locally compact Hausdorff space consisting of all countable ordinals, equipped with the order topology, and let C0[0,ω1) be the Banach space of scalar‐valued, continuous functions which are defined on [0,ω1) and vanish eventually. We show that a weak * ‐compact subset of the dual space of C0[0,ω1) is either uniformly Eberlein compact, or it contains a homeomorphic copy of a particular form of the ordinal interval [0,ω1] .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
8
审稿时长
41 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信