{"title":"因果泛函演算","authors":"H. Chiu, R. Cont","doi":"10.1112/tlm3.12050","DOIUrl":null,"url":null,"abstract":"We construct a new topology on the space of stopped paths and introduce a calculus for causal functionals on generic domains of this space. We propose a generic approach to pathwise integration without any assumption on the variation index of a path and obtain functional change of variable formulae which extend the results of Föllmer [Séminaire de probabilités 15 (1981), 143–150] and Cont and Fournié [J. Funct. Anal. 259 (2010), no. 4, 1043–1072] to a larger class of functionals, including Föllmer's pathwise integrals. We show that a class of smooth functionals possess a pathwise analogue of the martingale property. For paths that possess finite quadratic variation, our approach extends the Föllmer–Ito calculus and removes previous restriction on the time partition sequence. We introduce a foliation structure on this path space and show that harmonic functionals may be represented as pathwise integrals of closed 1‐forms.","PeriodicalId":41208,"journal":{"name":"Transactions of the London Mathematical Society","volume":"9 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2019-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Causal functional calculus\",\"authors\":\"H. Chiu, R. Cont\",\"doi\":\"10.1112/tlm3.12050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct a new topology on the space of stopped paths and introduce a calculus for causal functionals on generic domains of this space. We propose a generic approach to pathwise integration without any assumption on the variation index of a path and obtain functional change of variable formulae which extend the results of Föllmer [Séminaire de probabilités 15 (1981), 143–150] and Cont and Fournié [J. Funct. Anal. 259 (2010), no. 4, 1043–1072] to a larger class of functionals, including Föllmer's pathwise integrals. We show that a class of smooth functionals possess a pathwise analogue of the martingale property. For paths that possess finite quadratic variation, our approach extends the Föllmer–Ito calculus and removes previous restriction on the time partition sequence. We introduce a foliation structure on this path space and show that harmonic functionals may be represented as pathwise integrals of closed 1‐forms.\",\"PeriodicalId\":41208,\"journal\":{\"name\":\"Transactions of the London Mathematical Society\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2019-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the London Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1112/tlm3.12050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the London Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/tlm3.12050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7
摘要
我们在停止路径空间上构造了一个新的拓扑,并在该空间的一般域上引入了因果泛函的微积分。我们提出了一种不假设路径变化指数的路径积分的一般方法,并得到了变量的函数变化公式,该公式扩展了Föllmer [ssamminaire de probabilitsamrs 15(1981), 143-150]和Cont and fourni [J]的结果。功能。《肛门》,259 (2010),no。[4,1043 - 1072]到更大的泛函类,包括Föllmer的路径积分。我们证明了一类光滑泛函具有鞅性质的路径类似。对于具有有限二次变化的路径,我们的方法扩展了Föllmer-Ito演算,并消除了之前对时间划分序列的限制。我们在这个路径空间上引入了一个叶状结构,并证明调和泛函可以表示为闭合1‐型的路径积分。
We construct a new topology on the space of stopped paths and introduce a calculus for causal functionals on generic domains of this space. We propose a generic approach to pathwise integration without any assumption on the variation index of a path and obtain functional change of variable formulae which extend the results of Föllmer [Séminaire de probabilités 15 (1981), 143–150] and Cont and Fournié [J. Funct. Anal. 259 (2010), no. 4, 1043–1072] to a larger class of functionals, including Föllmer's pathwise integrals. We show that a class of smooth functionals possess a pathwise analogue of the martingale property. For paths that possess finite quadratic variation, our approach extends the Föllmer–Ito calculus and removes previous restriction on the time partition sequence. We introduce a foliation structure on this path space and show that harmonic functionals may be represented as pathwise integrals of closed 1‐forms.