一元解析类数公式的一个应用

Q1 Mathematics
C. Fieker, Yinan Zhang
{"title":"一元解析类数公式的一个应用","authors":"C. Fieker, Yinan Zhang","doi":"10.1112/S1461157016000097","DOIUrl":null,"url":null,"abstract":"We propose an algorithm to verify the $p$ -part of the class number for a number field $K$ , provided $K$ is totally real and an abelian extension of the rational field $\\mathbb{Q}$ , and $p$ is any prime. On fields of degree 4 or higher, this algorithm has been shown heuristically to be faster than classical algorithms that compute the entire class number, with improvement increasing with larger field degrees.","PeriodicalId":54381,"journal":{"name":"Lms Journal of Computation and Mathematics","volume":"19 1","pages":"217-228"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1112/S1461157016000097","citationCount":"8","resultStr":"{\"title\":\"An application of the -adic analytic class number formula\",\"authors\":\"C. Fieker, Yinan Zhang\",\"doi\":\"10.1112/S1461157016000097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an algorithm to verify the $p$ -part of the class number for a number field $K$ , provided $K$ is totally real and an abelian extension of the rational field $\\\\mathbb{Q}$ , and $p$ is any prime. On fields of degree 4 or higher, this algorithm has been shown heuristically to be faster than classical algorithms that compute the entire class number, with improvement increasing with larger field degrees.\",\"PeriodicalId\":54381,\"journal\":{\"name\":\"Lms Journal of Computation and Mathematics\",\"volume\":\"19 1\",\"pages\":\"217-228\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1112/S1461157016000097\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lms Journal of Computation and Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1112/S1461157016000097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lms Journal of Computation and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/S1461157016000097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 8

摘要

我们提出了一种验证数字域$K$类数的$p$ -部分的算法,假设$K$是完全实数并且是有理数域$\mathbb{Q}$的阿贝尔扩展,且$p$是任意素数。在4度或更高的域上,该算法已被启发式地证明比计算整个类数的经典算法更快,并且随着域度的增加而提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An application of the -adic analytic class number formula
We propose an algorithm to verify the $p$ -part of the class number for a number field $K$ , provided $K$ is totally real and an abelian extension of the rational field $\mathbb{Q}$ , and $p$ is any prime. On fields of degree 4 or higher, this algorithm has been shown heuristically to be faster than classical algorithms that compute the entire class number, with improvement increasing with larger field degrees.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lms Journal of Computation and Mathematics
Lms Journal of Computation and Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.60
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: LMS Journal of Computation and Mathematics has ceased publication. Its final volume is Volume 20 (2017). LMS Journal of Computation and Mathematics is an electronic-only resource that comprises papers on the computational aspects of mathematics, mathematical aspects of computation, and papers in mathematics which benefit from having been published electronically. The journal is refereed to the same high standard as the established LMS journals, and carries a commitment from the LMS to keep it archived into the indefinite future. Access is free until further notice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信