{"title":"若干属零算术群上全纯函数论的若干问题","authors":"J. Jorgenson, L. Smajlovic, H. Then","doi":"10.1112/S1461157016000425","DOIUrl":null,"url":null,"abstract":"There are a number of fundamental results in the study of holomorphic function theory associated to the discrete group PSL(2,Z) including the following statements: The ring of holomorphic modular forms is generated by the holomorphic Eisenstein series of weight four and six; the smallest weight cusp form Delta has weight twelve and can be written as a polynomial in E4 and E6; and the Hauptmodul j can be written as a multiple of E4 cubed divided by Delta. The goal of the present article is to seek generalizations of these results to some other genus zero arithmetic groups, namely those generated by Atkin-Lehner involutions of level N with square-free level N.","PeriodicalId":54381,"journal":{"name":"Lms Journal of Computation and Mathematics","volume":"19 1","pages":"360-381"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1112/S1461157016000425","citationCount":"11","resultStr":"{\"title\":\"Certain aspects of holomorphic function theory on some genus zero arithmetic groups\",\"authors\":\"J. Jorgenson, L. Smajlovic, H. Then\",\"doi\":\"10.1112/S1461157016000425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are a number of fundamental results in the study of holomorphic function theory associated to the discrete group PSL(2,Z) including the following statements: The ring of holomorphic modular forms is generated by the holomorphic Eisenstein series of weight four and six; the smallest weight cusp form Delta has weight twelve and can be written as a polynomial in E4 and E6; and the Hauptmodul j can be written as a multiple of E4 cubed divided by Delta. The goal of the present article is to seek generalizations of these results to some other genus zero arithmetic groups, namely those generated by Atkin-Lehner involutions of level N with square-free level N.\",\"PeriodicalId\":54381,\"journal\":{\"name\":\"Lms Journal of Computation and Mathematics\",\"volume\":\"19 1\",\"pages\":\"360-381\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1112/S1461157016000425\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lms Journal of Computation and Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1112/S1461157016000425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lms Journal of Computation and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/S1461157016000425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Certain aspects of holomorphic function theory on some genus zero arithmetic groups
There are a number of fundamental results in the study of holomorphic function theory associated to the discrete group PSL(2,Z) including the following statements: The ring of holomorphic modular forms is generated by the holomorphic Eisenstein series of weight four and six; the smallest weight cusp form Delta has weight twelve and can be written as a polynomial in E4 and E6; and the Hauptmodul j can be written as a multiple of E4 cubed divided by Delta. The goal of the present article is to seek generalizations of these results to some other genus zero arithmetic groups, namely those generated by Atkin-Lehner involutions of level N with square-free level N.
期刊介绍:
LMS Journal of Computation and Mathematics has ceased publication. Its final volume is Volume 20 (2017). LMS Journal of Computation and Mathematics is an electronic-only resource that comprises papers on the computational aspects of mathematics, mathematical aspects of computation, and papers in mathematics which benefit from having been published electronically. The journal is refereed to the same high standard as the established LMS journals, and carries a commitment from the LMS to keep it archived into the indefinite future. Access is free until further notice.