{"title":"计算量小的改进super-Halley方法半局部收敛性分析","authors":"Xiuhua Wang, Jisheng Kou","doi":"10.1112/S1461157016000395","DOIUrl":null,"url":null,"abstract":"In this paper, the semilocal convergence for ameliorated super-Halley methods in Banach spaces is considered. Different from the results in [J. M. Gutiérrez and M. A. Hernández, Comput. Math. Appl. 36 (1998) 1–8], these ameliorated methods do not need to compute a second derivative, the computation for inversion is reduced and the R-order is also heightened. Under a weaker condition, an existence–uniqueness theorem for the solution is proved.","PeriodicalId":54381,"journal":{"name":"Lms Journal of Computation and Mathematics","volume":"19 1","pages":"293-302"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1112/S1461157016000395","citationCount":"1","resultStr":"{\"title\":\"Analysis of semilocal convergence for ameliorated super-Halley methods with less computation for inversion\",\"authors\":\"Xiuhua Wang, Jisheng Kou\",\"doi\":\"10.1112/S1461157016000395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the semilocal convergence for ameliorated super-Halley methods in Banach spaces is considered. Different from the results in [J. M. Gutiérrez and M. A. Hernández, Comput. Math. Appl. 36 (1998) 1–8], these ameliorated methods do not need to compute a second derivative, the computation for inversion is reduced and the R-order is also heightened. Under a weaker condition, an existence–uniqueness theorem for the solution is proved.\",\"PeriodicalId\":54381,\"journal\":{\"name\":\"Lms Journal of Computation and Mathematics\",\"volume\":\"19 1\",\"pages\":\"293-302\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1112/S1461157016000395\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lms Journal of Computation and Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1112/S1461157016000395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lms Journal of Computation and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/S1461157016000395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Analysis of semilocal convergence for ameliorated super-Halley methods with less computation for inversion
In this paper, the semilocal convergence for ameliorated super-Halley methods in Banach spaces is considered. Different from the results in [J. M. Gutiérrez and M. A. Hernández, Comput. Math. Appl. 36 (1998) 1–8], these ameliorated methods do not need to compute a second derivative, the computation for inversion is reduced and the R-order is also heightened. Under a weaker condition, an existence–uniqueness theorem for the solution is proved.
期刊介绍:
LMS Journal of Computation and Mathematics has ceased publication. Its final volume is Volume 20 (2017). LMS Journal of Computation and Mathematics is an electronic-only resource that comprises papers on the computational aspects of mathematics, mathematical aspects of computation, and papers in mathematics which benefit from having been published electronically. The journal is refereed to the same high standard as the established LMS journals, and carries a commitment from the LMS to keep it archived into the indefinite future. Access is free until further notice.