两二次曲线交点的有效哈塞原理

Q1 Mathematics
Tony Quertier
{"title":"两二次曲线交点的有效哈塞原理","authors":"Tony Quertier","doi":"10.1112/S146115701600022X","DOIUrl":null,"url":null,"abstract":"We consider a smooth system of two homogeneous quadratic equations over the rationals in at least 13 variables. In this case, the Hasse principle is known to hold, thanks to the work of Mordell in 1959. The only local obstruction is over the reals. In this paper, we give an explicit algorithm to decide whether a nonzero rational solution exists, and if so, to compute one.","PeriodicalId":54381,"journal":{"name":"Lms Journal of Computation and Mathematics","volume":"19 1","pages":"73-82"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1112/S146115701600022X","citationCount":"3","resultStr":"{\"title\":\"Effective Hasse principle for the intersection of two quadrics\",\"authors\":\"Tony Quertier\",\"doi\":\"10.1112/S146115701600022X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a smooth system of two homogeneous quadratic equations over the rationals in at least 13 variables. In this case, the Hasse principle is known to hold, thanks to the work of Mordell in 1959. The only local obstruction is over the reals. In this paper, we give an explicit algorithm to decide whether a nonzero rational solution exists, and if so, to compute one.\",\"PeriodicalId\":54381,\"journal\":{\"name\":\"Lms Journal of Computation and Mathematics\",\"volume\":\"19 1\",\"pages\":\"73-82\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1112/S146115701600022X\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lms Journal of Computation and Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1112/S146115701600022X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lms Journal of Computation and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/S146115701600022X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

摘要

我们考虑至少有13个变量的有理数上的两个齐次二次方程的光滑系统。在这种情况下,由于莫德尔在1959年的工作,Hasse原理被认为是成立的。唯一的地方障碍是在公路上。本文给出了一种确定非零有理解是否存在的显式算法,如果存在则计算非零有理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effective Hasse principle for the intersection of two quadrics
We consider a smooth system of two homogeneous quadratic equations over the rationals in at least 13 variables. In this case, the Hasse principle is known to hold, thanks to the work of Mordell in 1959. The only local obstruction is over the reals. In this paper, we give an explicit algorithm to decide whether a nonzero rational solution exists, and if so, to compute one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lms Journal of Computation and Mathematics
Lms Journal of Computation and Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.60
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: LMS Journal of Computation and Mathematics has ceased publication. Its final volume is Volume 20 (2017). LMS Journal of Computation and Mathematics is an electronic-only resource that comprises papers on the computational aspects of mathematics, mathematical aspects of computation, and papers in mathematics which benefit from having been published electronically. The journal is refereed to the same high standard as the established LMS journals, and carries a commitment from the LMS to keep it archived into the indefinite future. Access is free until further notice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信