具有Hölder连续导数的圆微分同态的质心扩展的连续性

IF 1.1 Q1 MATHEMATICS
Katsuhiko Matsuzaki
{"title":"具有Hölder连续导数的圆微分同态的质心扩展的连续性","authors":"Katsuhiko Matsuzaki","doi":"10.1112/tlm3.12006","DOIUrl":null,"url":null,"abstract":"The barycentric extension due to Douady and Earle yields a conformally natural extension of a quasisymmetric self‐homeomorphism of the unit circle to a quasiconformal self‐homeomorphism of the unit disk. We consider such extensions for circle diffeomorphisms with Hölder continuous derivative and show that this operation is continuous with respect to an appropriate topology for the space of the corresponding Beltrami coefficients.","PeriodicalId":41208,"journal":{"name":"Transactions of the London Mathematical Society","volume":"4 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2016-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1112/tlm3.12006","citationCount":"5","resultStr":"{\"title\":\"Continuity of the barycentric extension of circle diffeomorphisms with Hölder continuous derivative\",\"authors\":\"Katsuhiko Matsuzaki\",\"doi\":\"10.1112/tlm3.12006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The barycentric extension due to Douady and Earle yields a conformally natural extension of a quasisymmetric self‐homeomorphism of the unit circle to a quasiconformal self‐homeomorphism of the unit disk. We consider such extensions for circle diffeomorphisms with Hölder continuous derivative and show that this operation is continuous with respect to an appropriate topology for the space of the corresponding Beltrami coefficients.\",\"PeriodicalId\":41208,\"journal\":{\"name\":\"Transactions of the London Mathematical Society\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2016-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1112/tlm3.12006\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the London Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1112/tlm3.12006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the London Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/tlm3.12006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

由Douady和Earle提出的质心扩展得到了单位圆的拟对称自同胚向单位盘的拟共形自同胚的共形自然扩展。我们考虑了具有Hölder连续导数的圆微分同态的这种扩展,并证明了该操作在相应的Beltrami系数空间的适当拓扑上是连续的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Continuity of the barycentric extension of circle diffeomorphisms with Hölder continuous derivative
The barycentric extension due to Douady and Earle yields a conformally natural extension of a quasisymmetric self‐homeomorphism of the unit circle to a quasiconformal self‐homeomorphism of the unit disk. We consider such extensions for circle diffeomorphisms with Hölder continuous derivative and show that this operation is continuous with respect to an appropriate topology for the space of the corresponding Beltrami coefficients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
8
审稿时长
41 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信