{"title":"Bochner Riesz乘子的稀疏双线性形式及其应用","authors":"C. Benea, F. Bernicot, T. Luque","doi":"10.1112/tlm3.12005","DOIUrl":null,"url":null,"abstract":"We use the very recent approach developed by Lacey in [An elementary proof of the A2 Bound, Israel J. Math., to appear] and extended by Bernicot, Frey and Petermichl in [Sharp weighted norm estimates beyond Calderón‐Zygmund theory, Anal. PDE 9 (2016) 1079–1113], in order to control Bochner–Riesz operators by a sparse bilinear form. In this way, new quantitative weighted estimates, as well as vector‐valued inequalities are deduced.","PeriodicalId":41208,"journal":{"name":"Transactions of the London Mathematical Society","volume":"4 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2016-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1112/tlm3.12005","citationCount":"45","resultStr":"{\"title\":\"Sparse bilinear forms for Bochner Riesz multipliers and applications\",\"authors\":\"C. Benea, F. Bernicot, T. Luque\",\"doi\":\"10.1112/tlm3.12005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use the very recent approach developed by Lacey in [An elementary proof of the A2 Bound, Israel J. Math., to appear] and extended by Bernicot, Frey and Petermichl in [Sharp weighted norm estimates beyond Calderón‐Zygmund theory, Anal. PDE 9 (2016) 1079–1113], in order to control Bochner–Riesz operators by a sparse bilinear form. In this way, new quantitative weighted estimates, as well as vector‐valued inequalities are deduced.\",\"PeriodicalId\":41208,\"journal\":{\"name\":\"Transactions of the London Mathematical Society\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2016-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1112/tlm3.12005\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the London Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1112/tlm3.12005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the London Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/tlm3.12005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Sparse bilinear forms for Bochner Riesz multipliers and applications
We use the very recent approach developed by Lacey in [An elementary proof of the A2 Bound, Israel J. Math., to appear] and extended by Bernicot, Frey and Petermichl in [Sharp weighted norm estimates beyond Calderón‐Zygmund theory, Anal. PDE 9 (2016) 1079–1113], in order to control Bochner–Riesz operators by a sparse bilinear form. In this way, new quantitative weighted estimates, as well as vector‐valued inequalities are deduced.