Bochner Riesz乘子的稀疏双线性形式及其应用

IF 1.1 Q1 MATHEMATICS
C. Benea, F. Bernicot, T. Luque
{"title":"Bochner Riesz乘子的稀疏双线性形式及其应用","authors":"C. Benea, F. Bernicot, T. Luque","doi":"10.1112/tlm3.12005","DOIUrl":null,"url":null,"abstract":"We use the very recent approach developed by Lacey in [An elementary proof of the A2 Bound, Israel J. Math., to appear] and extended by Bernicot, Frey and Petermichl in [Sharp weighted norm estimates beyond Calderón‐Zygmund theory, Anal. PDE 9 (2016) 1079–1113], in order to control Bochner–Riesz operators by a sparse bilinear form. In this way, new quantitative weighted estimates, as well as vector‐valued inequalities are deduced.","PeriodicalId":41208,"journal":{"name":"Transactions of the London Mathematical Society","volume":"4 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2016-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1112/tlm3.12005","citationCount":"45","resultStr":"{\"title\":\"Sparse bilinear forms for Bochner Riesz multipliers and applications\",\"authors\":\"C. Benea, F. Bernicot, T. Luque\",\"doi\":\"10.1112/tlm3.12005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use the very recent approach developed by Lacey in [An elementary proof of the A2 Bound, Israel J. Math., to appear] and extended by Bernicot, Frey and Petermichl in [Sharp weighted norm estimates beyond Calderón‐Zygmund theory, Anal. PDE 9 (2016) 1079–1113], in order to control Bochner–Riesz operators by a sparse bilinear form. In this way, new quantitative weighted estimates, as well as vector‐valued inequalities are deduced.\",\"PeriodicalId\":41208,\"journal\":{\"name\":\"Transactions of the London Mathematical Society\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2016-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1112/tlm3.12005\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the London Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1112/tlm3.12005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the London Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/tlm3.12005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 45

摘要

我们使用Lacey在[A2边界的基本证明,Israel J. Math]中开发的最新方法。由Bernicot, Frey和Petermichl在[Sharp weighted norm estimates beyond Calderón‐Zygmund theory, Anal]中扩展。PDE 9(2016) 1079-1113],以稀疏双线性形式控制Bochner-Riesz算子。通过这种方法,我们推导出了新的量化加权估计和向量值不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse bilinear forms for Bochner Riesz multipliers and applications
We use the very recent approach developed by Lacey in [An elementary proof of the A2 Bound, Israel J. Math., to appear] and extended by Bernicot, Frey and Petermichl in [Sharp weighted norm estimates beyond Calderón‐Zygmund theory, Anal. PDE 9 (2016) 1079–1113], in order to control Bochner–Riesz operators by a sparse bilinear form. In this way, new quantitative weighted estimates, as well as vector‐valued inequalities are deduced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
8
审稿时长
41 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信