{"title":"带有显式误差项的贝塞尔和艾里函数的近似","authors":"I. Krasikov","doi":"10.1112/S1461157013000351","DOIUrl":null,"url":null,"abstract":"We show how one can obtain an asymptotic expression for some special functions with a very explicit error term starting from appropriate upper bounds. We will work out the details for the Bessel function Jν(x) and the Airy function Ai(x). In particular, we answer a question raised by Olenko and find a sharp bound on the difference between Jν(x) and its standard asymptotics. We also give a very simple and surprisingly precise approximation for the zeros Ai(x).","PeriodicalId":54381,"journal":{"name":"Lms Journal of Computation and Mathematics","volume":"17 1","pages":"209-225"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1112/S1461157013000351","citationCount":"50","resultStr":"{\"title\":\"Approximations for the Bessel and Airy functions with an explicit error term\",\"authors\":\"I. Krasikov\",\"doi\":\"10.1112/S1461157013000351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show how one can obtain an asymptotic expression for some special functions with a very explicit error term starting from appropriate upper bounds. We will work out the details for the Bessel function Jν(x) and the Airy function Ai(x). In particular, we answer a question raised by Olenko and find a sharp bound on the difference between Jν(x) and its standard asymptotics. We also give a very simple and surprisingly precise approximation for the zeros Ai(x).\",\"PeriodicalId\":54381,\"journal\":{\"name\":\"Lms Journal of Computation and Mathematics\",\"volume\":\"17 1\",\"pages\":\"209-225\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1112/S1461157013000351\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lms Journal of Computation and Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1112/S1461157013000351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lms Journal of Computation and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/S1461157013000351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Approximations for the Bessel and Airy functions with an explicit error term
We show how one can obtain an asymptotic expression for some special functions with a very explicit error term starting from appropriate upper bounds. We will work out the details for the Bessel function Jν(x) and the Airy function Ai(x). In particular, we answer a question raised by Olenko and find a sharp bound on the difference between Jν(x) and its standard asymptotics. We also give a very simple and surprisingly precise approximation for the zeros Ai(x).
期刊介绍:
LMS Journal of Computation and Mathematics has ceased publication. Its final volume is Volume 20 (2017). LMS Journal of Computation and Mathematics is an electronic-only resource that comprises papers on the computational aspects of mathematics, mathematical aspects of computation, and papers in mathematics which benefit from having been published electronically. The journal is refereed to the same high standard as the established LMS journals, and carries a commitment from the LMS to keep it archived into the indefinite future. Access is free until further notice.