带有显式误差项的贝塞尔和艾里函数的近似

Q1 Mathematics
I. Krasikov
{"title":"带有显式误差项的贝塞尔和艾里函数的近似","authors":"I. Krasikov","doi":"10.1112/S1461157013000351","DOIUrl":null,"url":null,"abstract":"We show how one can obtain an asymptotic expression for some special functions with a very explicit error term starting from appropriate upper bounds. We will work out the details for the Bessel function Jν(x) and the Airy function Ai(x). In particular, we answer a question raised by Olenko and find a sharp bound on the difference between Jν(x) and its standard asymptotics. We also give a very simple and surprisingly precise approximation for the zeros Ai(x).","PeriodicalId":54381,"journal":{"name":"Lms Journal of Computation and Mathematics","volume":"17 1","pages":"209-225"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1112/S1461157013000351","citationCount":"50","resultStr":"{\"title\":\"Approximations for the Bessel and Airy functions with an explicit error term\",\"authors\":\"I. Krasikov\",\"doi\":\"10.1112/S1461157013000351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show how one can obtain an asymptotic expression for some special functions with a very explicit error term starting from appropriate upper bounds. We will work out the details for the Bessel function Jν(x) and the Airy function Ai(x). In particular, we answer a question raised by Olenko and find a sharp bound on the difference between Jν(x) and its standard asymptotics. We also give a very simple and surprisingly precise approximation for the zeros Ai(x).\",\"PeriodicalId\":54381,\"journal\":{\"name\":\"Lms Journal of Computation and Mathematics\",\"volume\":\"17 1\",\"pages\":\"209-225\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1112/S1461157013000351\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lms Journal of Computation and Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1112/S1461157013000351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lms Journal of Computation and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/S1461157013000351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 50

摘要

我们展示了如何从适当的上界开始,得到一些具有非常明确误差项的特殊函数的渐近表达式。我们将计算出贝塞尔函数Jν(x)和艾里函数Ai(x)的细节。特别地,我们回答了Olenko提出的一个问题,并找到了Jν(x)与它的标准渐近差的一个尖锐的界。我们也给出了零点Ai(x)的一个非常简单和精确的近似值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximations for the Bessel and Airy functions with an explicit error term
We show how one can obtain an asymptotic expression for some special functions with a very explicit error term starting from appropriate upper bounds. We will work out the details for the Bessel function Jν(x) and the Airy function Ai(x). In particular, we answer a question raised by Olenko and find a sharp bound on the difference between Jν(x) and its standard asymptotics. We also give a very simple and surprisingly precise approximation for the zeros Ai(x).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lms Journal of Computation and Mathematics
Lms Journal of Computation and Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.60
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: LMS Journal of Computation and Mathematics has ceased publication. Its final volume is Volume 20 (2017). LMS Journal of Computation and Mathematics is an electronic-only resource that comprises papers on the computational aspects of mathematics, mathematical aspects of computation, and papers in mathematics which benefit from having been published electronically. The journal is refereed to the same high standard as the established LMS journals, and carries a commitment from the LMS to keep it archived into the indefinite future. Access is free until further notice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信