{"title":"有实际乘法的曲面的例子","authors":"A. Elsenhans, J. Jahnel","doi":"10.1112/S1461157014000199","DOIUrl":null,"url":null,"abstract":"We construct explicit $K3$\n surfaces over $\\mathbb{Q}$\n having real multiplication. Our examples are of geometric Picard rank 16. The standard method for the computation of the Picard rank provably fails for the surfaces constructed.","PeriodicalId":54381,"journal":{"name":"Lms Journal of Computation and Mathematics","volume":"17 1","pages":"14-35"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1112/S1461157014000199","citationCount":"12","resultStr":"{\"title\":\"Examples of surfaces with real multiplication\",\"authors\":\"A. Elsenhans, J. Jahnel\",\"doi\":\"10.1112/S1461157014000199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct explicit $K3$\\n surfaces over $\\\\mathbb{Q}$\\n having real multiplication. Our examples are of geometric Picard rank 16. The standard method for the computation of the Picard rank provably fails for the surfaces constructed.\",\"PeriodicalId\":54381,\"journal\":{\"name\":\"Lms Journal of Computation and Mathematics\",\"volume\":\"17 1\",\"pages\":\"14-35\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1112/S1461157014000199\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lms Journal of Computation and Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1112/S1461157014000199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lms Journal of Computation and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/S1461157014000199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
We construct explicit $K3$
surfaces over $\mathbb{Q}$
having real multiplication. Our examples are of geometric Picard rank 16. The standard method for the computation of the Picard rank provably fails for the surfaces constructed.
期刊介绍:
LMS Journal of Computation and Mathematics has ceased publication. Its final volume is Volume 20 (2017). LMS Journal of Computation and Mathematics is an electronic-only resource that comprises papers on the computational aspects of mathematics, mathematical aspects of computation, and papers in mathematics which benefit from having been published electronically. The journal is refereed to the same high standard as the established LMS journals, and carries a commitment from the LMS to keep it archived into the indefinite future. Access is free until further notice.