特征二的普通椭圆曲线的modell - weil基的计算

Q1 Mathematics
G. Moehlmann
{"title":"特征二的普通椭圆曲线的modell - weil基的计算","authors":"G. Moehlmann","doi":"10.1112/S1461157014000175","DOIUrl":null,"url":null,"abstract":"In this paper we consider ordinary elliptic curves over global function fields of characteristic 2. We present a method for performing a descent by using powers of the Frobenius and the Verschiebung. An examination of the local images of the descent maps together with a duality theorem yields information about the global Selmer groups. Explicit models for the homogeneous spaces representing the elements of the Selmer groups are given and used to construct independent points on the elliptic curve. As an application we use descent maps to prove an upper bound for the naive height of an S-integral point on A. To illustrate our methods, a detailed example is presented.","PeriodicalId":54381,"journal":{"name":"Lms Journal of Computation and Mathematics","volume":"17 1","pages":"1-13"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1112/S1461157014000175","citationCount":"1","resultStr":"{\"title\":\"Computation of Mordell–Weil bases for ordinary elliptic curves in characteristic two\",\"authors\":\"G. Moehlmann\",\"doi\":\"10.1112/S1461157014000175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider ordinary elliptic curves over global function fields of characteristic 2. We present a method for performing a descent by using powers of the Frobenius and the Verschiebung. An examination of the local images of the descent maps together with a duality theorem yields information about the global Selmer groups. Explicit models for the homogeneous spaces representing the elements of the Selmer groups are given and used to construct independent points on the elliptic curve. As an application we use descent maps to prove an upper bound for the naive height of an S-integral point on A. To illustrate our methods, a detailed example is presented.\",\"PeriodicalId\":54381,\"journal\":{\"name\":\"Lms Journal of Computation and Mathematics\",\"volume\":\"17 1\",\"pages\":\"1-13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1112/S1461157014000175\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lms Journal of Computation and Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1112/S1461157014000175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lms Journal of Computation and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/S1461157014000175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

本文研究特征为2的全局函数场上的普通椭圆曲线。我们提出了一种利用佛罗贝尼乌斯和佛斯基邦的力量进行下降的方法。结合对偶定理对下降图的局部图像进行检查,可以得到关于全局Selmer群的信息。给出了表示Selmer群元素的齐次空间的显式模型,并用于构造椭圆曲线上的独立点。作为一个应用,我们使用下降映射来证明a上一个s积分点的朴素高度的上界。为了说明我们的方法,给出了一个详细的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computation of Mordell–Weil bases for ordinary elliptic curves in characteristic two
In this paper we consider ordinary elliptic curves over global function fields of characteristic 2. We present a method for performing a descent by using powers of the Frobenius and the Verschiebung. An examination of the local images of the descent maps together with a duality theorem yields information about the global Selmer groups. Explicit models for the homogeneous spaces representing the elements of the Selmer groups are given and used to construct independent points on the elliptic curve. As an application we use descent maps to prove an upper bound for the naive height of an S-integral point on A. To illustrate our methods, a detailed example is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lms Journal of Computation and Mathematics
Lms Journal of Computation and Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.60
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: LMS Journal of Computation and Mathematics has ceased publication. Its final volume is Volume 20 (2017). LMS Journal of Computation and Mathematics is an electronic-only resource that comprises papers on the computational aspects of mathematics, mathematical aspects of computation, and papers in mathematics which benefit from having been published electronically. The journal is refereed to the same high standard as the established LMS journals, and carries a commitment from the LMS to keep it archived into the indefinite future. Access is free until further notice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信