{"title":"关于等差数列中平方的Rudin猜想","authors":"Enrique Gonz'alez-Jim'enez, X. Xarles","doi":"10.1112/S1461157013000259","DOIUrl":null,"url":null,"abstract":"Let Q(N;q,a) denotes the number of squares in the arithmetic progression qn+a, for n=0, 1,...,N-1, and let Q(N) be the maximum of Q(N;q,a) over all non-trivial arithmetic progressions qn + a. Rudin's conjecture asserts that Q(N)=O(Sqrt(N)), and in its stronger form that Q(N)=Q(N;24,1) if N=> 6. We prove the conjecture above for 6 8 for some integer k, where GP_k is the k-th generalized pentagonal number, then Q(N)=Q(N;q,a) with gcd(q,a) squarefree and q> 0 if and only if (q,a)=(24,1).","PeriodicalId":54381,"journal":{"name":"Lms Journal of Computation and Mathematics","volume":"17 1","pages":"58-76"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1112/S1461157013000259","citationCount":"8","resultStr":"{\"title\":\"On a conjecture of Rudin on squares in Arithmetic Progressions\",\"authors\":\"Enrique Gonz'alez-Jim'enez, X. Xarles\",\"doi\":\"10.1112/S1461157013000259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let Q(N;q,a) denotes the number of squares in the arithmetic progression qn+a, for n=0, 1,...,N-1, and let Q(N) be the maximum of Q(N;q,a) over all non-trivial arithmetic progressions qn + a. Rudin's conjecture asserts that Q(N)=O(Sqrt(N)), and in its stronger form that Q(N)=Q(N;24,1) if N=> 6. We prove the conjecture above for 6 8 for some integer k, where GP_k is the k-th generalized pentagonal number, then Q(N)=Q(N;q,a) with gcd(q,a) squarefree and q> 0 if and only if (q,a)=(24,1).\",\"PeriodicalId\":54381,\"journal\":{\"name\":\"Lms Journal of Computation and Mathematics\",\"volume\":\"17 1\",\"pages\":\"58-76\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1112/S1461157013000259\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lms Journal of Computation and Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1112/S1461157013000259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lms Journal of Computation and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/S1461157013000259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
On a conjecture of Rudin on squares in Arithmetic Progressions
Let Q(N;q,a) denotes the number of squares in the arithmetic progression qn+a, for n=0, 1,...,N-1, and let Q(N) be the maximum of Q(N;q,a) over all non-trivial arithmetic progressions qn + a. Rudin's conjecture asserts that Q(N)=O(Sqrt(N)), and in its stronger form that Q(N)=Q(N;24,1) if N=> 6. We prove the conjecture above for 6 8 for some integer k, where GP_k is the k-th generalized pentagonal number, then Q(N)=Q(N;q,a) with gcd(q,a) squarefree and q> 0 if and only if (q,a)=(24,1).
期刊介绍:
LMS Journal of Computation and Mathematics has ceased publication. Its final volume is Volume 20 (2017). LMS Journal of Computation and Mathematics is an electronic-only resource that comprises papers on the computational aspects of mathematics, mathematical aspects of computation, and papers in mathematics which benefit from having been published electronically. The journal is refereed to the same high standard as the established LMS journals, and carries a commitment from the LMS to keep it archived into the indefinite future. Access is free until further notice.