关于7-和11-全等椭圆曲线族

Q1 Mathematics
T. Fisher
{"title":"关于7-和11-全等椭圆曲线族","authors":"T. Fisher","doi":"10.1112/S1461157014000059","DOIUrl":null,"url":null,"abstract":"We use an invariant-theoretic method to compute certain twists of the modular curves X(n) for n = 7, 11. Searching for rational points on these twists enables us to find non-trivial pairs of n-congruent elliptic curves over Q, that is, pairs of non-isogenous elliptic curves over Q whose n-torsion subgroups are isomorphic as Galois modules. We also find a non-trivial pair of 11-congruent elliptic curves over Q(T ), and hence give an explicit infinite family of non-trivial pairs of 11-congruent elliptic curves over Q. Supplementary materials are available with this article.","PeriodicalId":54381,"journal":{"name":"Lms Journal of Computation and Mathematics","volume":"17 1","pages":"536-564"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1112/S1461157014000059","citationCount":"16","resultStr":"{\"title\":\"On families of 7- and 11-congruent elliptic curves\",\"authors\":\"T. Fisher\",\"doi\":\"10.1112/S1461157014000059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use an invariant-theoretic method to compute certain twists of the modular curves X(n) for n = 7, 11. Searching for rational points on these twists enables us to find non-trivial pairs of n-congruent elliptic curves over Q, that is, pairs of non-isogenous elliptic curves over Q whose n-torsion subgroups are isomorphic as Galois modules. We also find a non-trivial pair of 11-congruent elliptic curves over Q(T ), and hence give an explicit infinite family of non-trivial pairs of 11-congruent elliptic curves over Q. Supplementary materials are available with this article.\",\"PeriodicalId\":54381,\"journal\":{\"name\":\"Lms Journal of Computation and Mathematics\",\"volume\":\"17 1\",\"pages\":\"536-564\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1112/S1461157014000059\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lms Journal of Computation and Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1112/S1461157014000059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lms Journal of Computation and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/S1461157014000059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 16

摘要

我们用一种不变量理论方法计算了n = 7,11时模曲线X(n)的某些扭曲。在这些扭转上寻找有理点使我们能够找到Q上n个全等椭圆曲线的非平凡对,即Q上n个扭转子群同构为伽罗瓦模的非同构椭圆曲线对。我们也找到了Q(T)上的一对11-同余椭圆曲线的非平凡对,从而给出了Q上的一个11-同余椭圆曲线的非平凡对的显式无穷族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On families of 7- and 11-congruent elliptic curves
We use an invariant-theoretic method to compute certain twists of the modular curves X(n) for n = 7, 11. Searching for rational points on these twists enables us to find non-trivial pairs of n-congruent elliptic curves over Q, that is, pairs of non-isogenous elliptic curves over Q whose n-torsion subgroups are isomorphic as Galois modules. We also find a non-trivial pair of 11-congruent elliptic curves over Q(T ), and hence give an explicit infinite family of non-trivial pairs of 11-congruent elliptic curves over Q. Supplementary materials are available with this article.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lms Journal of Computation and Mathematics
Lms Journal of Computation and Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.60
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: LMS Journal of Computation and Mathematics has ceased publication. Its final volume is Volume 20 (2017). LMS Journal of Computation and Mathematics is an electronic-only resource that comprises papers on the computational aspects of mathematics, mathematical aspects of computation, and papers in mathematics which benefit from having been published electronically. The journal is refereed to the same high standard as the established LMS journals, and carries a commitment from the LMS to keep it archived into the indefinite future. Access is free until further notice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信