合数的线性递归序列

Q1 Mathematics
Jonas Siurys
{"title":"合数的线性递归序列","authors":"Jonas Siurys","doi":"10.1112/S1461157012001143","DOIUrl":null,"url":null,"abstract":"We prove that for each positive integer k in the range 2≤ k ≤10 and for each positive integer k ≡79 ( mod  120) there is a k -step Fibonacci-like sequence of composite numbers and give some examples of such sequences. This is a natural extension of a result of Graham for the Fibonacci-like sequence.","PeriodicalId":54381,"journal":{"name":"Lms Journal of Computation and Mathematics","volume":"15 1","pages":"360-373"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1112/S1461157012001143","citationCount":"2","resultStr":"{\"title\":\"A linear recurrence sequence of composite numbers\",\"authors\":\"Jonas Siurys\",\"doi\":\"10.1112/S1461157012001143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that for each positive integer k in the range 2≤ k ≤10 and for each positive integer k ≡79 ( mod  120) there is a k -step Fibonacci-like sequence of composite numbers and give some examples of such sequences. This is a natural extension of a result of Graham for the Fibonacci-like sequence.\",\"PeriodicalId\":54381,\"journal\":{\"name\":\"Lms Journal of Computation and Mathematics\",\"volume\":\"15 1\",\"pages\":\"360-373\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1112/S1461157012001143\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lms Journal of Computation and Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1112/S1461157012001143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lms Journal of Computation and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/S1461157012001143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

证明了对于2≤k≤10范围内的每一个正整数k,以及对于每一个正整数k≡79 (mod 120),存在一个k步类合数斐波那契数列,并给出了该类数列的一些例子。这是Graham对类斐波那契数列结果的自然扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A linear recurrence sequence of composite numbers
We prove that for each positive integer k in the range 2≤ k ≤10 and for each positive integer k ≡79 ( mod  120) there is a k -step Fibonacci-like sequence of composite numbers and give some examples of such sequences. This is a natural extension of a result of Graham for the Fibonacci-like sequence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lms Journal of Computation and Mathematics
Lms Journal of Computation and Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.60
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: LMS Journal of Computation and Mathematics has ceased publication. Its final volume is Volume 20 (2017). LMS Journal of Computation and Mathematics is an electronic-only resource that comprises papers on the computational aspects of mathematics, mathematical aspects of computation, and papers in mathematics which benefit from having been published electronically. The journal is refereed to the same high standard as the established LMS journals, and carries a commitment from the LMS to keep it archived into the indefinite future. Access is free until further notice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信