加权空间上clodowsky算子和Százs-Durrmeyer算子的组合逼近

Q1 Mathematics
Aydin Izgi
{"title":"加权空间上clodowsky算子和Százs-Durrmeyer算子的组合逼近","authors":"Aydin Izgi","doi":"10.1112/S1461157013000090","DOIUrl":null,"url":null,"abstract":"In this paper we deal with the operators $$\\begin{eqnarray*}{Z}_{n} (f; x)= \\frac{n}{{b}_{n} } { \\mathop{\\sum }\\nolimits}_{k= 0}^{n} {p}_{n, k} \\biggl(\\frac{x}{{b}_{n} } \\biggr)\\int \\nolimits \\nolimits_{0}^{\\infty } {s}_{n, k} \\biggl(\\frac{t}{{b}_{n} } \\biggr)f(t)\\hspace{0.167em} dt, \\quad 0\\leq x\\leq {b}_{n}\\end{eqnarray*}$$ and study some basic properties of these operators where ${p}_{n, k} (u)=\\bigl(\\hspace{-4pt}{\\scriptsize \\begin{array}{ l} \\displaystyle n\\\\ \\displaystyle k\\end{array} } \\hspace{-4pt}\\bigr){u}^{k} \\mathop{(1- u)}\\nolimits ^{n- k} , (0\\leq k\\leq n), u\\in [0, 1] $ and ${s}_{n, k} (u)= {e}^{- nu} \\mathop{(nu)}\\nolimits ^{k} \\hspace{-3pt}/ k!, u\\in [0, \\infty )$ . Also, we establish the order of approximation by using weighted modulus of continuity.","PeriodicalId":54381,"journal":{"name":"Lms Journal of Computation and Mathematics","volume":"16 1","pages":"388-397"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1112/S1461157013000090","citationCount":"5","resultStr":"{\"title\":\"Approximation by a composition of Chlodowsky operators and Százs–Durrmeyer operators on weighted spaces\",\"authors\":\"Aydin Izgi\",\"doi\":\"10.1112/S1461157013000090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we deal with the operators $$\\\\begin{eqnarray*}{Z}_{n} (f; x)= \\\\frac{n}{{b}_{n} } { \\\\mathop{\\\\sum }\\\\nolimits}_{k= 0}^{n} {p}_{n, k} \\\\biggl(\\\\frac{x}{{b}_{n} } \\\\biggr)\\\\int \\\\nolimits \\\\nolimits_{0}^{\\\\infty } {s}_{n, k} \\\\biggl(\\\\frac{t}{{b}_{n} } \\\\biggr)f(t)\\\\hspace{0.167em} dt, \\\\quad 0\\\\leq x\\\\leq {b}_{n}\\\\end{eqnarray*}$$ and study some basic properties of these operators where ${p}_{n, k} (u)=\\\\bigl(\\\\hspace{-4pt}{\\\\scriptsize \\\\begin{array}{ l} \\\\displaystyle n\\\\\\\\ \\\\displaystyle k\\\\end{array} } \\\\hspace{-4pt}\\\\bigr){u}^{k} \\\\mathop{(1- u)}\\\\nolimits ^{n- k} , (0\\\\leq k\\\\leq n), u\\\\in [0, 1] $ and ${s}_{n, k} (u)= {e}^{- nu} \\\\mathop{(nu)}\\\\nolimits ^{k} \\\\hspace{-3pt}/ k!, u\\\\in [0, \\\\infty )$ . Also, we establish the order of approximation by using weighted modulus of continuity.\",\"PeriodicalId\":54381,\"journal\":{\"name\":\"Lms Journal of Computation and Mathematics\",\"volume\":\"16 1\",\"pages\":\"388-397\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1112/S1461157013000090\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lms Journal of Computation and Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1112/S1461157013000090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lms Journal of Computation and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/S1461157013000090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5

摘要

本文讨论了算子$$\begin{eqnarray*}{Z}_{n} (f; x)= \frac{n}{{b}_{n} } { \mathop{\sum }\nolimits}_{k= 0}^{n} {p}_{n, k} \biggl(\frac{x}{{b}_{n} } \biggr)\int \nolimits \nolimits_{0}^{\infty } {s}_{n, k} \biggl(\frac{t}{{b}_{n} } \biggr)f(t)\hspace{0.167em} dt, \quad 0\leq x\leq {b}_{n}\end{eqnarray*}$$,研究了这些算子的一些基本性质,其中${p}_{n, k} (u)=\bigl(\hspace{-4pt}{\scriptsize \begin{array}{ l} \displaystyle n\\ \displaystyle k\end{array} } \hspace{-4pt}\bigr){u}^{k} \mathop{(1- u)}\nolimits ^{n- k} , (0\leq k\leq n), u\in [0, 1] $和${s}_{n, k} (u)= {e}^{- nu} \mathop{(nu)}\nolimits ^{k} \hspace{-3pt}/ k!, u\in [0, \infty )$。并利用连续的加权模建立了近似的阶数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximation by a composition of Chlodowsky operators and Százs–Durrmeyer operators on weighted spaces
In this paper we deal with the operators $$\begin{eqnarray*}{Z}_{n} (f; x)= \frac{n}{{b}_{n} } { \mathop{\sum }\nolimits}_{k= 0}^{n} {p}_{n, k} \biggl(\frac{x}{{b}_{n} } \biggr)\int \nolimits \nolimits_{0}^{\infty } {s}_{n, k} \biggl(\frac{t}{{b}_{n} } \biggr)f(t)\hspace{0.167em} dt, \quad 0\leq x\leq {b}_{n}\end{eqnarray*}$$ and study some basic properties of these operators where ${p}_{n, k} (u)=\bigl(\hspace{-4pt}{\scriptsize \begin{array}{ l} \displaystyle n\\ \displaystyle k\end{array} } \hspace{-4pt}\bigr){u}^{k} \mathop{(1- u)}\nolimits ^{n- k} , (0\leq k\leq n), u\in [0, 1] $ and ${s}_{n, k} (u)= {e}^{- nu} \mathop{(nu)}\nolimits ^{k} \hspace{-3pt}/ k!, u\in [0, \infty )$ . Also, we establish the order of approximation by using weighted modulus of continuity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lms Journal of Computation and Mathematics
Lms Journal of Computation and Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.60
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: LMS Journal of Computation and Mathematics has ceased publication. Its final volume is Volume 20 (2017). LMS Journal of Computation and Mathematics is an electronic-only resource that comprises papers on the computational aspects of mathematics, mathematical aspects of computation, and papers in mathematics which benefit from having been published electronically. The journal is refereed to the same high standard as the established LMS journals, and carries a commitment from the LMS to keep it archived into the indefinite future. Access is free until further notice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信