{"title":"加权空间上clodowsky算子和Százs-Durrmeyer算子的组合逼近","authors":"Aydin Izgi","doi":"10.1112/S1461157013000090","DOIUrl":null,"url":null,"abstract":"In this paper we deal with the operators $$\\begin{eqnarray*}{Z}_{n} (f; x)= \\frac{n}{{b}_{n} } { \\mathop{\\sum }\\nolimits}_{k= 0}^{n} {p}_{n, k} \\biggl(\\frac{x}{{b}_{n} } \\biggr)\\int \\nolimits \\nolimits_{0}^{\\infty } {s}_{n, k} \\biggl(\\frac{t}{{b}_{n} } \\biggr)f(t)\\hspace{0.167em} dt, \\quad 0\\leq x\\leq {b}_{n}\\end{eqnarray*}$$ and study some basic properties of these operators where ${p}_{n, k} (u)=\\bigl(\\hspace{-4pt}{\\scriptsize \\begin{array}{ l} \\displaystyle n\\\\ \\displaystyle k\\end{array} } \\hspace{-4pt}\\bigr){u}^{k} \\mathop{(1- u)}\\nolimits ^{n- k} , (0\\leq k\\leq n), u\\in [0, 1] $ and ${s}_{n, k} (u)= {e}^{- nu} \\mathop{(nu)}\\nolimits ^{k} \\hspace{-3pt}/ k!, u\\in [0, \\infty )$ . Also, we establish the order of approximation by using weighted modulus of continuity.","PeriodicalId":54381,"journal":{"name":"Lms Journal of Computation and Mathematics","volume":"16 1","pages":"388-397"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1112/S1461157013000090","citationCount":"5","resultStr":"{\"title\":\"Approximation by a composition of Chlodowsky operators and Százs–Durrmeyer operators on weighted spaces\",\"authors\":\"Aydin Izgi\",\"doi\":\"10.1112/S1461157013000090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we deal with the operators $$\\\\begin{eqnarray*}{Z}_{n} (f; x)= \\\\frac{n}{{b}_{n} } { \\\\mathop{\\\\sum }\\\\nolimits}_{k= 0}^{n} {p}_{n, k} \\\\biggl(\\\\frac{x}{{b}_{n} } \\\\biggr)\\\\int \\\\nolimits \\\\nolimits_{0}^{\\\\infty } {s}_{n, k} \\\\biggl(\\\\frac{t}{{b}_{n} } \\\\biggr)f(t)\\\\hspace{0.167em} dt, \\\\quad 0\\\\leq x\\\\leq {b}_{n}\\\\end{eqnarray*}$$ and study some basic properties of these operators where ${p}_{n, k} (u)=\\\\bigl(\\\\hspace{-4pt}{\\\\scriptsize \\\\begin{array}{ l} \\\\displaystyle n\\\\\\\\ \\\\displaystyle k\\\\end{array} } \\\\hspace{-4pt}\\\\bigr){u}^{k} \\\\mathop{(1- u)}\\\\nolimits ^{n- k} , (0\\\\leq k\\\\leq n), u\\\\in [0, 1] $ and ${s}_{n, k} (u)= {e}^{- nu} \\\\mathop{(nu)}\\\\nolimits ^{k} \\\\hspace{-3pt}/ k!, u\\\\in [0, \\\\infty )$ . Also, we establish the order of approximation by using weighted modulus of continuity.\",\"PeriodicalId\":54381,\"journal\":{\"name\":\"Lms Journal of Computation and Mathematics\",\"volume\":\"16 1\",\"pages\":\"388-397\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1112/S1461157013000090\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lms Journal of Computation and Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1112/S1461157013000090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lms Journal of Computation and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/S1461157013000090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Approximation by a composition of Chlodowsky operators and Százs–Durrmeyer operators on weighted spaces
In this paper we deal with the operators $$\begin{eqnarray*}{Z}_{n} (f; x)= \frac{n}{{b}_{n} } { \mathop{\sum }\nolimits}_{k= 0}^{n} {p}_{n, k} \biggl(\frac{x}{{b}_{n} } \biggr)\int \nolimits \nolimits_{0}^{\infty } {s}_{n, k} \biggl(\frac{t}{{b}_{n} } \biggr)f(t)\hspace{0.167em} dt, \quad 0\leq x\leq {b}_{n}\end{eqnarray*}$$ and study some basic properties of these operators where ${p}_{n, k} (u)=\bigl(\hspace{-4pt}{\scriptsize \begin{array}{ l} \displaystyle n\\ \displaystyle k\end{array} } \hspace{-4pt}\bigr){u}^{k} \mathop{(1- u)}\nolimits ^{n- k} , (0\leq k\leq n), u\in [0, 1] $ and ${s}_{n, k} (u)= {e}^{- nu} \mathop{(nu)}\nolimits ^{k} \hspace{-3pt}/ k!, u\in [0, \infty )$ . Also, we establish the order of approximation by using weighted modulus of continuity.
期刊介绍:
LMS Journal of Computation and Mathematics has ceased publication. Its final volume is Volume 20 (2017). LMS Journal of Computation and Mathematics is an electronic-only resource that comprises papers on the computational aspects of mathematics, mathematical aspects of computation, and papers in mathematics which benefit from having been published electronically. The journal is refereed to the same high standard as the established LMS journals, and carries a commitment from the LMS to keep it archived into the indefinite future. Access is free until further notice.